L(s) = 1 | + (−0.155 + 0.269i)2-s + (1.12 − 1.94i)3-s + (0.951 + 1.64i)4-s + (0.349 + 0.604i)6-s + 3.96·7-s − 1.21·8-s + (−1.01 − 1.76i)9-s + 0.361·11-s + 4.27·12-s + (−1.25 − 2.17i)13-s + (−0.617 + 1.06i)14-s + (−1.71 + 2.96i)16-s + (−0.00464 + 0.00803i)17-s + 0.633·18-s + (−3.45 + 2.65i)19-s + ⋯ |
L(s) = 1 | + (−0.109 + 0.190i)2-s + (0.647 − 1.12i)3-s + (0.475 + 0.824i)4-s + (0.142 + 0.246i)6-s + 1.50·7-s − 0.429·8-s + (−0.339 − 0.587i)9-s + 0.108·11-s + 1.23·12-s + (−0.348 − 0.604i)13-s + (−0.165 + 0.285i)14-s + (−0.428 + 0.742i)16-s + (−0.00112 + 0.00194i)17-s + 0.149·18-s + (−0.793 + 0.609i)19-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(0.983+0.178i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(0.983+0.178i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
0.983+0.178i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), 0.983+0.178i)
|
Particular Values
L(1) |
≈ |
2.01350−0.181033i |
L(21) |
≈ |
2.01350−0.181033i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(3.45−2.65i)T |
good | 2 | 1+(0.155−0.269i)T+(−1−1.73i)T2 |
| 3 | 1+(−1.12+1.94i)T+(−1.5−2.59i)T2 |
| 7 | 1−3.96T+7T2 |
| 11 | 1−0.361T+11T2 |
| 13 | 1+(1.25+2.17i)T+(−6.5+11.2i)T2 |
| 17 | 1+(0.00464−0.00803i)T+(−8.5−14.7i)T2 |
| 23 | 1+(−2.70−4.68i)T+(−11.5+19.9i)T2 |
| 29 | 1+(4.72+8.18i)T+(−14.5+25.1i)T2 |
| 31 | 1−3.66T+31T2 |
| 37 | 1−0.0596T+37T2 |
| 41 | 1+(1.85−3.21i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2.10+3.64i)T+(−21.5−37.2i)T2 |
| 47 | 1+(6.45+11.1i)T+(−23.5+40.7i)T2 |
| 53 | 1+(5.48+9.50i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−2.65+4.60i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4.44−7.70i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2.32−4.02i)T+(−33.5+58.0i)T2 |
| 71 | 1+(7.68−13.3i)T+(−35.5−61.4i)T2 |
| 73 | 1+(4.83−8.36i)T+(−36.5−63.2i)T2 |
| 79 | 1+(6.70−11.6i)T+(−39.5−68.4i)T2 |
| 83 | 1+15.5T+83T2 |
| 89 | 1+(−2.08−3.61i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−1.87+3.24i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.42083523459798674206609504175, −10.08286341528978993546592449844, −8.577676998668760482851670383408, −8.157769479605353385178716237274, −7.53849097682163694850012135350, −6.75146875870722341184452330710, −5.43490807777781566439265872357, −3.99526827464811868725654850505, −2.58087012120811510063666994177, −1.66171642933155908020893713013,
1.64745820740410844217129635511, 2.89564707018477251374468674271, 4.51965393208119485609087909429, 4.90567731615423234223719183663, 6.33705869592074149550969234813, 7.48979234568587720470428849406, 8.750844420032352301168763966750, 9.174608944156344960858333621352, 10.27363624089657501190039413962, 10.89308570719035888725585007674