L(s) = 1 | + (−1.32 + 1.80i)5-s + 4.64·11-s + i·13-s + 4.24i·17-s + 6.24·19-s − 2.24i·23-s + (−1.51 − 4.76i)25-s − 9.21·29-s + 9.28·31-s − 7.28i·37-s + 5.67·41-s − 4.24i·43-s + 2.88i·47-s + 7·49-s + 9.21i·53-s + ⋯ |
L(s) = 1 | + (−0.590 + 0.807i)5-s + 1.39·11-s + 0.277i·13-s + 1.03i·17-s + 1.43·19-s − 0.469i·23-s + (−0.303 − 0.952i)25-s − 1.71·29-s + 1.66·31-s − 1.19i·37-s + 0.885·41-s − 0.648i·43-s + 0.421i·47-s + 49-s + 1.26i·53-s + ⋯ |
Λ(s)=(=(4680s/2ΓC(s)L(s)(0.590−0.807i)Λ(2−s)
Λ(s)=(=(4680s/2ΓC(s+1/2)L(s)(0.590−0.807i)Λ(1−s)
Degree: |
2 |
Conductor: |
4680
= 23⋅32⋅5⋅13
|
Sign: |
0.590−0.807i
|
Analytic conductor: |
37.3699 |
Root analytic conductor: |
6.11309 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4680(2809,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4680, ( :1/2), 0.590−0.807i)
|
Particular Values
L(1) |
≈ |
1.935877096 |
L(21) |
≈ |
1.935877096 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(1.32−1.80i)T |
| 13 | 1−iT |
good | 7 | 1−7T2 |
| 11 | 1−4.64T+11T2 |
| 17 | 1−4.24iT−17T2 |
| 19 | 1−6.24T+19T2 |
| 23 | 1+2.24iT−23T2 |
| 29 | 1+9.21T+29T2 |
| 31 | 1−9.28T+31T2 |
| 37 | 1+7.28iT−37T2 |
| 41 | 1−5.67T+41T2 |
| 43 | 1+4.24iT−43T2 |
| 47 | 1−2.88iT−47T2 |
| 53 | 1−9.21iT−53T2 |
| 59 | 1−5.92T+59T2 |
| 61 | 1−0.969T+61T2 |
| 67 | 1−1.93iT−67T2 |
| 71 | 1+5.60T+71T2 |
| 73 | 1+12.5iT−73T2 |
| 79 | 1+12.2T+79T2 |
| 83 | 1−3.67iT−83T2 |
| 89 | 1+9.67T+89T2 |
| 97 | 1−6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.411724813109780973455536093848, −7.46222732410433249347188830150, −7.14800034352124969813701017431, −6.20086024720175438117583436428, −5.74500155277341439032436228531, −4.39989038625850932156593794582, −3.91448958986992446456638781821, −3.16240868630571458552652351563, −2.10553046701344435642962485854, −0.948629858708896455709054543124,
0.71982684269182858581747500371, 1.48852049399851799998283749392, 2.91116198848940890657210184104, 3.71361675055774189050791387533, 4.43745917766107825015043634404, 5.22374879187697506366668300811, 5.89183448816922971218214625537, 6.95005375838309732910075642872, 7.43208548335375710538221930372, 8.230697021696547120823972166986