L(s) = 1 | + (−1.32 + 1.80i)5-s + 4.64·11-s + i·13-s + 4.24i·17-s + 6.24·19-s − 2.24i·23-s + (−1.51 − 4.76i)25-s − 9.21·29-s + 9.28·31-s − 7.28i·37-s + 5.67·41-s − 4.24i·43-s + 2.88i·47-s + 7·49-s + 9.21i·53-s + ⋯ |
L(s) = 1 | + (−0.590 + 0.807i)5-s + 1.39·11-s + 0.277i·13-s + 1.03i·17-s + 1.43·19-s − 0.469i·23-s + (−0.303 − 0.952i)25-s − 1.71·29-s + 1.66·31-s − 1.19i·37-s + 0.885·41-s − 0.648i·43-s + 0.421i·47-s + 49-s + 1.26i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.590 - 0.807i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.590 - 0.807i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.935877096\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.935877096\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.32 - 1.80i)T \) |
| 13 | \( 1 - iT \) |
good | 7 | \( 1 - 7T^{2} \) |
| 11 | \( 1 - 4.64T + 11T^{2} \) |
| 17 | \( 1 - 4.24iT - 17T^{2} \) |
| 19 | \( 1 - 6.24T + 19T^{2} \) |
| 23 | \( 1 + 2.24iT - 23T^{2} \) |
| 29 | \( 1 + 9.21T + 29T^{2} \) |
| 31 | \( 1 - 9.28T + 31T^{2} \) |
| 37 | \( 1 + 7.28iT - 37T^{2} \) |
| 41 | \( 1 - 5.67T + 41T^{2} \) |
| 43 | \( 1 + 4.24iT - 43T^{2} \) |
| 47 | \( 1 - 2.88iT - 47T^{2} \) |
| 53 | \( 1 - 9.21iT - 53T^{2} \) |
| 59 | \( 1 - 5.92T + 59T^{2} \) |
| 61 | \( 1 - 0.969T + 61T^{2} \) |
| 67 | \( 1 - 1.93iT - 67T^{2} \) |
| 71 | \( 1 + 5.60T + 71T^{2} \) |
| 73 | \( 1 + 12.5iT - 73T^{2} \) |
| 79 | \( 1 + 12.2T + 79T^{2} \) |
| 83 | \( 1 - 3.67iT - 83T^{2} \) |
| 89 | \( 1 + 9.67T + 89T^{2} \) |
| 97 | \( 1 - 6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.411724813109780973455536093848, −7.46222732410433249347188830150, −7.14800034352124969813701017431, −6.20086024720175438117583436428, −5.74500155277341439032436228531, −4.39989038625850932156593794582, −3.91448958986992446456638781821, −3.16240868630571458552652351563, −2.10553046701344435642962485854, −0.948629858708896455709054543124,
0.71982684269182858581747500371, 1.48852049399851799998283749392, 2.91116198848940890657210184104, 3.71361675055774189050791387533, 4.43745917766107825015043634404, 5.22374879187697506366668300811, 5.89183448816922971218214625537, 6.95005375838309732910075642872, 7.43208548335375710538221930372, 8.230697021696547120823972166986