Properties

Label 4680.2.l.e
Level 46804680
Weight 22
Character orbit 4680.l
Analytic conductor 37.37037.370
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4680,2,Mod(2809,4680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4680.2809"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 4680=2332513 4680 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4680.l (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 37.369988146037.3699881460
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.5161984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x64x3+25x220x+8 x^{6} - 4x^{3} + 25x^{2} - 20x + 8 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 1560)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β4q5+(β5β4+2)q11β3q13+(β5+β4+β1)q17+(β5β4+β1)q19+(β5β44β3++β1)q23+6β3q97+O(q100) q + \beta_{4} q^{5} + ( - \beta_{5} - \beta_{4} + 2) q^{11} - \beta_{3} q^{13} + ( - \beta_{5} + \beta_{4} + \cdots - \beta_1) q^{17} + ( - \beta_{5} - \beta_{4} + \cdots - \beta_1) q^{19} + (\beta_{5} - \beta_{4} - 4 \beta_{3} + \cdots + \beta_1) q^{23}+ \cdots - 6 \beta_{3} q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+12q11+4q1910q2520q29+24q31+20q41+42q4920q5512q59+4q612q6516q7140q7932q8544q8916q95+O(q100) 6 q + 12 q^{11} + 4 q^{19} - 10 q^{25} - 20 q^{29} + 24 q^{31} + 20 q^{41} + 42 q^{49} - 20 q^{55} - 12 q^{59} + 4 q^{61} - 2 q^{65} - 16 q^{71} - 40 q^{79} - 32 q^{85} - 44 q^{89} - 16 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x64x3+25x220x+8 x^{6} - 4x^{3} + 25x^{2} - 20x + 8 : Copy content Toggle raw display

β1\beta_{1}== (2ν5+25ν4+10ν34ν2121ν+323)/121 ( 2\nu^{5} + 25\nu^{4} + 10\nu^{3} - 4\nu^{2} - 121\nu + 323 ) / 121 Copy content Toggle raw display
β2\beta_{2}== (7ν527ν435ν3+14ν2121ν223)/121 ( -7\nu^{5} - 27\nu^{4} - 35\nu^{3} + 14\nu^{2} - 121\nu - 223 ) / 121 Copy content Toggle raw display
β3\beta_{3}== (25ν510ν44ν3+50ν2605ν+258)/242 ( -25\nu^{5} - 10\nu^{4} - 4\nu^{3} + 50\nu^{2} - 605\nu + 258 ) / 242 Copy content Toggle raw display
β4\beta_{4}== (65ν526ν4+38ν3+372ν21573ν+574)/242 ( -65\nu^{5} - 26\nu^{4} + 38\nu^{3} + 372\nu^{2} - 1573\nu + 574 ) / 242 Copy content Toggle raw display
β5\beta_{5}== (75ν5+30ν4+12ν3392ν2+1573ν774)/242 ( 75\nu^{5} + 30\nu^{4} + 12\nu^{3} - 392\nu^{2} + 1573\nu - 774 ) / 242 Copy content Toggle raw display
ν\nu== (β5β4β2β1)/2 ( -\beta_{5} - \beta_{4} - \beta_{2} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β5+β46β3+β2+β1)/2 ( -\beta_{5} + \beta_{4} - 6\beta_{3} + \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (5β5+5β4+4β35β25β1+4)/2 ( 5\beta_{5} + 5\beta_{4} + 4\beta_{3} - 5\beta_{2} - 5\beta _1 + 4 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (9β59β45β2+5β130)/2 ( -9\beta_{5} - 9\beta_{4} - 5\beta_{2} + 5\beta _1 - 30 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (25β5+29β432β3+29β2+25β1+32)/2 ( 25\beta_{5} + 29\beta_{4} - 32\beta_{3} + 29\beta_{2} + 25\beta _1 + 32 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4680Z)×\left(\mathbb{Z}/4680\mathbb{Z}\right)^\times.

nn 937937 10811081 20812081 23412341 35113511
χ(n)\chi(n) 1-1 11 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2809.1
1.32001 1.32001i
1.32001 + 1.32001i
0.432320 + 0.432320i
0.432320 0.432320i
−1.75233 + 1.75233i
−1.75233 1.75233i
0 0 0 −1.32001 1.80487i 0 0 0 0 0
2809.2 0 0 0 −1.32001 + 1.80487i 0 0 0 0 0
2809.3 0 0 0 −0.432320 2.19388i 0 0 0 0 0
2809.4 0 0 0 −0.432320 + 2.19388i 0 0 0 0 0
2809.5 0 0 0 1.75233 1.38900i 0 0 0 0 0
2809.6 0 0 0 1.75233 + 1.38900i 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2809.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4680.2.l.e 6
3.b odd 2 1 1560.2.l.c 6
5.b even 2 1 inner 4680.2.l.e 6
12.b even 2 1 3120.2.l.m 6
15.d odd 2 1 1560.2.l.c 6
15.e even 4 1 7800.2.a.bj 3
15.e even 4 1 7800.2.a.bp 3
60.h even 2 1 3120.2.l.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1560.2.l.c 6 3.b odd 2 1
1560.2.l.c 6 15.d odd 2 1
3120.2.l.m 6 12.b even 2 1
3120.2.l.m 6 60.h even 2 1
4680.2.l.e 6 1.a even 1 1 trivial
4680.2.l.e 6 5.b even 2 1 inner
7800.2.a.bj 3 15.e even 4 1
7800.2.a.bp 3 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4680,[χ])S_{2}^{\mathrm{new}}(4680, [\chi]):

T7 T_{7} Copy content Toggle raw display
T1136T112+2T11+20 T_{11}^{3} - 6T_{11}^{2} + 2T_{11} + 20 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 T6+5T4++125 T^{6} + 5 T^{4} + \cdots + 125 Copy content Toggle raw display
77 T6 T^{6} Copy content Toggle raw display
1111 (T36T2+2T+20)2 (T^{3} - 6 T^{2} + 2 T + 20)^{2} Copy content Toggle raw display
1313 (T2+1)3 (T^{2} + 1)^{3} Copy content Toggle raw display
1717 T6+56T4++4096 T^{6} + 56 T^{4} + \cdots + 4096 Copy content Toggle raw display
1919 (T32T224T16)2 (T^{3} - 2 T^{2} - 24 T - 16)^{2} Copy content Toggle raw display
2323 T6+84T4++6400 T^{6} + 84 T^{4} + \cdots + 6400 Copy content Toggle raw display
2929 (T3+10T2+472)2 (T^{3} + 10 T^{2} + \cdots - 472)^{2} Copy content Toggle raw display
3131 (T312T2++160)2 (T^{3} - 12 T^{2} + \cdots + 160)^{2} Copy content Toggle raw display
3737 T6+92T4++18496 T^{6} + 92 T^{4} + \cdots + 18496 Copy content Toggle raw display
4141 (T310T2++332)2 (T^{3} - 10 T^{2} + \cdots + 332)^{2} Copy content Toggle raw display
4343 T6+56T4++4096 T^{6} + 56 T^{4} + \cdots + 4096 Copy content Toggle raw display
4747 T6+188T4++65536 T^{6} + 188 T^{4} + \cdots + 65536 Copy content Toggle raw display
5353 T6+188T4++222784 T^{6} + 188 T^{4} + \cdots + 222784 Copy content Toggle raw display
5959 (T3+6T278T+44)2 (T^{3} + 6 T^{2} - 78 T + 44)^{2} Copy content Toggle raw display
6161 (T32T232T+32)2 (T^{3} - 2 T^{2} - 32 T + 32)^{2} Copy content Toggle raw display
6767 T6+272T4++65536 T^{6} + 272 T^{4} + \cdots + 65536 Copy content Toggle raw display
7171 (T3+8T2+2T64)2 (T^{3} + 8 T^{2} + 2 T - 64)^{2} Copy content Toggle raw display
7373 T6+332T4++678976 T^{6} + 332 T^{4} + \cdots + 678976 Copy content Toggle raw display
7979 (T3+20T2++160)2 (T^{3} + 20 T^{2} + \cdots + 160)^{2} Copy content Toggle raw display
8383 T6+140T4++53824 T^{6} + 140 T^{4} + \cdots + 53824 Copy content Toggle raw display
8989 (T3+22T2+244)2 (T^{3} + 22 T^{2} + \cdots - 244)^{2} Copy content Toggle raw display
9797 (T2+36)3 (T^{2} + 36)^{3} Copy content Toggle raw display
show more
show less