gp: [N,k,chi] = [4680,2,Mod(2809,4680)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4680, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4680.2809");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [6,0,0,0,0,0,0,0,0,0,12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 − 4 x 3 + 25 x 2 − 20 x + 8 x^{6} - 4x^{3} + 25x^{2} - 20x + 8 x 6 − 4 x 3 + 2 5 x 2 − 2 0 x + 8
x^6 - 4*x^3 + 25*x^2 - 20*x + 8
:
β 1 \beta_{1} β 1 = = =
( 2 ν 5 + 25 ν 4 + 10 ν 3 − 4 ν 2 − 121 ν + 323 ) / 121 ( 2\nu^{5} + 25\nu^{4} + 10\nu^{3} - 4\nu^{2} - 121\nu + 323 ) / 121 ( 2 ν 5 + 2 5 ν 4 + 1 0 ν 3 − 4 ν 2 − 1 2 1 ν + 3 2 3 ) / 1 2 1
(2*v^5 + 25*v^4 + 10*v^3 - 4*v^2 - 121*v + 323) / 121
β 2 \beta_{2} β 2 = = =
( − 7 ν 5 − 27 ν 4 − 35 ν 3 + 14 ν 2 − 121 ν − 223 ) / 121 ( -7\nu^{5} - 27\nu^{4} - 35\nu^{3} + 14\nu^{2} - 121\nu - 223 ) / 121 ( − 7 ν 5 − 2 7 ν 4 − 3 5 ν 3 + 1 4 ν 2 − 1 2 1 ν − 2 2 3 ) / 1 2 1
(-7*v^5 - 27*v^4 - 35*v^3 + 14*v^2 - 121*v - 223) / 121
β 3 \beta_{3} β 3 = = =
( − 25 ν 5 − 10 ν 4 − 4 ν 3 + 50 ν 2 − 605 ν + 258 ) / 242 ( -25\nu^{5} - 10\nu^{4} - 4\nu^{3} + 50\nu^{2} - 605\nu + 258 ) / 242 ( − 2 5 ν 5 − 1 0 ν 4 − 4 ν 3 + 5 0 ν 2 − 6 0 5 ν + 2 5 8 ) / 2 4 2
(-25*v^5 - 10*v^4 - 4*v^3 + 50*v^2 - 605*v + 258) / 242
β 4 \beta_{4} β 4 = = =
( − 65 ν 5 − 26 ν 4 + 38 ν 3 + 372 ν 2 − 1573 ν + 574 ) / 242 ( -65\nu^{5} - 26\nu^{4} + 38\nu^{3} + 372\nu^{2} - 1573\nu + 574 ) / 242 ( − 6 5 ν 5 − 2 6 ν 4 + 3 8 ν 3 + 3 7 2 ν 2 − 1 5 7 3 ν + 5 7 4 ) / 2 4 2
(-65*v^5 - 26*v^4 + 38*v^3 + 372*v^2 - 1573*v + 574) / 242
β 5 \beta_{5} β 5 = = =
( 75 ν 5 + 30 ν 4 + 12 ν 3 − 392 ν 2 + 1573 ν − 774 ) / 242 ( 75\nu^{5} + 30\nu^{4} + 12\nu^{3} - 392\nu^{2} + 1573\nu - 774 ) / 242 ( 7 5 ν 5 + 3 0 ν 4 + 1 2 ν 3 − 3 9 2 ν 2 + 1 5 7 3 ν − 7 7 4 ) / 2 4 2
(75*v^5 + 30*v^4 + 12*v^3 - 392*v^2 + 1573*v - 774) / 242
ν \nu ν = = =
( − β 5 − β 4 − β 2 − β 1 ) / 2 ( -\beta_{5} - \beta_{4} - \beta_{2} - \beta_1 ) / 2 ( − β 5 − β 4 − β 2 − β 1 ) / 2
(-b5 - b4 - b2 - b1) / 2
ν 2 \nu^{2} ν 2 = = =
( − β 5 + β 4 − 6 β 3 + β 2 + β 1 ) / 2 ( -\beta_{5} + \beta_{4} - 6\beta_{3} + \beta_{2} + \beta_1 ) / 2 ( − β 5 + β 4 − 6 β 3 + β 2 + β 1 ) / 2
(-b5 + b4 - 6*b3 + b2 + b1) / 2
ν 3 \nu^{3} ν 3 = = =
( 5 β 5 + 5 β 4 + 4 β 3 − 5 β 2 − 5 β 1 + 4 ) / 2 ( 5\beta_{5} + 5\beta_{4} + 4\beta_{3} - 5\beta_{2} - 5\beta _1 + 4 ) / 2 ( 5 β 5 + 5 β 4 + 4 β 3 − 5 β 2 − 5 β 1 + 4 ) / 2
(5*b5 + 5*b4 + 4*b3 - 5*b2 - 5*b1 + 4) / 2
ν 4 \nu^{4} ν 4 = = =
( − 9 β 5 − 9 β 4 − 5 β 2 + 5 β 1 − 30 ) / 2 ( -9\beta_{5} - 9\beta_{4} - 5\beta_{2} + 5\beta _1 - 30 ) / 2 ( − 9 β 5 − 9 β 4 − 5 β 2 + 5 β 1 − 3 0 ) / 2
(-9*b5 - 9*b4 - 5*b2 + 5*b1 - 30) / 2
ν 5 \nu^{5} ν 5 = = =
( 25 β 5 + 29 β 4 − 32 β 3 + 29 β 2 + 25 β 1 + 32 ) / 2 ( 25\beta_{5} + 29\beta_{4} - 32\beta_{3} + 29\beta_{2} + 25\beta _1 + 32 ) / 2 ( 2 5 β 5 + 2 9 β 4 − 3 2 β 3 + 2 9 β 2 + 2 5 β 1 + 3 2 ) / 2
(25*b5 + 29*b4 - 32*b3 + 29*b2 + 25*b1 + 32) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 4680 Z ) × \left(\mathbb{Z}/4680\mathbb{Z}\right)^\times ( Z / 4 6 8 0 Z ) × .
n n n
937 937 9 3 7
1081 1081 1 0 8 1
2081 2081 2 0 8 1
2341 2341 2 3 4 1
3511 3511 3 5 1 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
1 1 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 4680 , [ χ ] ) S_{2}^{\mathrm{new}}(4680, [\chi]) S 2 n e w ( 4 6 8 0 , [ χ ] ) :
T 7 T_{7} T 7
T7
T 11 3 − 6 T 11 2 + 2 T 11 + 20 T_{11}^{3} - 6T_{11}^{2} + 2T_{11} + 20 T 1 1 3 − 6 T 1 1 2 + 2 T 1 1 + 2 0
T11^3 - 6*T11^2 + 2*T11 + 20
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 T^{6} T 6
T^6
3 3 3
T 6 T^{6} T 6
T^6
5 5 5
T 6 + 5 T 4 + ⋯ + 125 T^{6} + 5 T^{4} + \cdots + 125 T 6 + 5 T 4 + ⋯ + 1 2 5
T^6 + 5*T^4 - 8*T^3 + 25*T^2 + 125
7 7 7
T 6 T^{6} T 6
T^6
11 11 1 1
( T 3 − 6 T 2 + 2 T + 20 ) 2 (T^{3} - 6 T^{2} + 2 T + 20)^{2} ( T 3 − 6 T 2 + 2 T + 2 0 ) 2
(T^3 - 6*T^2 + 2*T + 20)^2
13 13 1 3
( T 2 + 1 ) 3 (T^{2} + 1)^{3} ( T 2 + 1 ) 3
(T^2 + 1)^3
17 17 1 7
T 6 + 56 T 4 + ⋯ + 4096 T^{6} + 56 T^{4} + \cdots + 4096 T 6 + 5 6 T 4 + ⋯ + 4 0 9 6
T^6 + 56*T^4 + 912*T^2 + 4096
19 19 1 9
( T 3 − 2 T 2 − 24 T − 16 ) 2 (T^{3} - 2 T^{2} - 24 T - 16)^{2} ( T 3 − 2 T 2 − 2 4 T − 1 6 ) 2
(T^3 - 2*T^2 - 24*T - 16)^2
23 23 2 3
T 6 + 84 T 4 + ⋯ + 6400 T^{6} + 84 T^{4} + \cdots + 6400 T 6 + 8 4 T 4 + ⋯ + 6 4 0 0
T^6 + 84*T^4 + 1664*T^2 + 6400
29 29 2 9
( T 3 + 10 T 2 + ⋯ − 472 ) 2 (T^{3} + 10 T^{2} + \cdots - 472)^{2} ( T 3 + 1 0 T 2 + ⋯ − 4 7 2 ) 2
(T^3 + 10*T^2 - 44*T - 472)^2
31 31 3 1
( T 3 − 12 T 2 + ⋯ + 160 ) 2 (T^{3} - 12 T^{2} + \cdots + 160)^{2} ( T 3 − 1 2 T 2 + ⋯ + 1 6 0 ) 2
(T^3 - 12*T^2 + 8*T + 160)^2
37 37 3 7
T 6 + 92 T 4 + ⋯ + 18496 T^{6} + 92 T^{4} + \cdots + 18496 T 6 + 9 2 T 4 + ⋯ + 1 8 4 9 6
T^6 + 92*T^4 + 2416*T^2 + 18496
41 41 4 1
( T 3 − 10 T 2 + ⋯ + 332 ) 2 (T^{3} - 10 T^{2} + \cdots + 332)^{2} ( T 3 − 1 0 T 2 + ⋯ + 3 3 2 ) 2
(T^3 - 10*T^2 - 34*T + 332)^2
43 43 4 3
T 6 + 56 T 4 + ⋯ + 4096 T^{6} + 56 T^{4} + \cdots + 4096 T 6 + 5 6 T 4 + ⋯ + 4 0 9 6
T^6 + 56*T^4 + 912*T^2 + 4096
47 47 4 7
T 6 + 188 T 4 + ⋯ + 65536 T^{6} + 188 T^{4} + \cdots + 65536 T 6 + 1 8 8 T 4 + ⋯ + 6 5 5 3 6
T^6 + 188*T^4 + 9348*T^2 + 65536
53 53 5 3
T 6 + 188 T 4 + ⋯ + 222784 T^{6} + 188 T^{4} + \cdots + 222784 T 6 + 1 8 8 T 4 + ⋯ + 2 2 2 7 8 4
T^6 + 188*T^4 + 11376*T^2 + 222784
59 59 5 9
( T 3 + 6 T 2 − 78 T + 44 ) 2 (T^{3} + 6 T^{2} - 78 T + 44)^{2} ( T 3 + 6 T 2 − 7 8 T + 4 4 ) 2
(T^3 + 6*T^2 - 78*T + 44)^2
61 61 6 1
( T 3 − 2 T 2 − 32 T + 32 ) 2 (T^{3} - 2 T^{2} - 32 T + 32)^{2} ( T 3 − 2 T 2 − 3 2 T + 3 2 ) 2
(T^3 - 2*T^2 - 32*T + 32)^2
67 67 6 7
T 6 + 272 T 4 + ⋯ + 65536 T^{6} + 272 T^{4} + \cdots + 65536 T 6 + 2 7 2 T 4 + ⋯ + 6 5 5 3 6
T^6 + 272*T^4 + 18432*T^2 + 65536
71 71 7 1
( T 3 + 8 T 2 + 2 T − 64 ) 2 (T^{3} + 8 T^{2} + 2 T - 64)^{2} ( T 3 + 8 T 2 + 2 T − 6 4 ) 2
(T^3 + 8*T^2 + 2*T - 64)^2
73 73 7 3
T 6 + 332 T 4 + ⋯ + 678976 T^{6} + 332 T^{4} + \cdots + 678976 T 6 + 3 3 2 T 4 + ⋯ + 6 7 8 9 7 6
T^6 + 332*T^4 + 31792*T^2 + 678976
79 79 7 9
( T 3 + 20 T 2 + ⋯ + 160 ) 2 (T^{3} + 20 T^{2} + \cdots + 160)^{2} ( T 3 + 2 0 T 2 + ⋯ + 1 6 0 ) 2
(T^3 + 20*T^2 + 108*T + 160)^2
83 83 8 3
T 6 + 140 T 4 + ⋯ + 53824 T^{6} + 140 T^{4} + \cdots + 53824 T 6 + 1 4 0 T 4 + ⋯ + 5 3 8 2 4
T^6 + 140*T^4 + 5700*T^2 + 53824
89 89 8 9
( T 3 + 22 T 2 + ⋯ − 244 ) 2 (T^{3} + 22 T^{2} + \cdots - 244)^{2} ( T 3 + 2 2 T 2 + ⋯ − 2 4 4 ) 2
(T^3 + 22*T^2 + 94*T - 244)^2
97 97 9 7
( T 2 + 36 ) 3 (T^{2} + 36)^{3} ( T 2 + 3 6 ) 3
(T^2 + 36)^3
show more
show less