L(s) = 1 | + (−0.432 + 2.19i)5-s + 2.86·11-s − i·13-s + 5.52i·17-s − 3.52·19-s − 7.52i·23-s + (−4.62 − 1.89i)25-s + 6.77·29-s + 5.72·31-s + 3.72i·37-s + 10.1·41-s − 5.52i·43-s + 8.65i·47-s + 7·49-s + 6.77i·53-s + ⋯ |
L(s) = 1 | + (−0.193 + 0.981i)5-s + 0.863·11-s − 0.277i·13-s + 1.33i·17-s − 0.808·19-s − 1.56i·23-s + (−0.925 − 0.379i)25-s + 1.25·29-s + 1.02·31-s + 0.613i·37-s + 1.58·41-s − 0.842i·43-s + 1.26i·47-s + 49-s + 0.930i·53-s + ⋯ |
Λ(s)=(=(4680s/2ΓC(s)L(s)(0.193−0.981i)Λ(2−s)
Λ(s)=(=(4680s/2ΓC(s+1/2)L(s)(0.193−0.981i)Λ(1−s)
Degree: |
2 |
Conductor: |
4680
= 23⋅32⋅5⋅13
|
Sign: |
0.193−0.981i
|
Analytic conductor: |
37.3699 |
Root analytic conductor: |
6.11309 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4680(2809,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4680, ( :1/2), 0.193−0.981i)
|
Particular Values
L(1) |
≈ |
1.801061854 |
L(21) |
≈ |
1.801061854 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.432−2.19i)T |
| 13 | 1+iT |
good | 7 | 1−7T2 |
| 11 | 1−2.86T+11T2 |
| 17 | 1−5.52iT−17T2 |
| 19 | 1+3.52T+19T2 |
| 23 | 1+7.52iT−23T2 |
| 29 | 1−6.77T+29T2 |
| 31 | 1−5.72T+31T2 |
| 37 | 1−3.72iT−37T2 |
| 41 | 1−10.1T+41T2 |
| 43 | 1+5.52iT−43T2 |
| 47 | 1−8.65iT−47T2 |
| 53 | 1−6.77iT−53T2 |
| 59 | 1−0.593T+59T2 |
| 61 | 1+5.25T+61T2 |
| 67 | 1−10.5iT−67T2 |
| 71 | 1−2.38T+71T2 |
| 73 | 1−5.45iT−73T2 |
| 79 | 1+2.47T+79T2 |
| 83 | 1+8.11iT−83T2 |
| 89 | 1+14.1T+89T2 |
| 97 | 1+6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.425120743073341628868273339490, −7.79400609123136420726740042124, −6.83739152639280979666889543239, −6.35304221367034421979273785517, −5.85481012593241506975413612539, −4.38394205765901716660828495813, −4.13842918912213600175080120516, −2.97956226764813729100427102126, −2.33132382598715334318289327529, −1.03386278589994126815067191048,
0.59243593757709679059700618896, 1.54079912051774152703859307490, 2.65458032746447290560620701111, 3.75685407349228408381358467755, 4.43441508361631149398344838610, 5.09840545324127403708726290904, 5.93020585797601907393633195346, 6.72220424177298598955374694829, 7.47260936783346338712087983172, 8.200723662411147341530368792946