Properties

Label 2-4680-5.4-c1-0-32
Degree $2$
Conductor $4680$
Sign $0.193 - 0.981i$
Analytic cond. $37.3699$
Root an. cond. $6.11309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.432 + 2.19i)5-s + 2.86·11-s i·13-s + 5.52i·17-s − 3.52·19-s − 7.52i·23-s + (−4.62 − 1.89i)25-s + 6.77·29-s + 5.72·31-s + 3.72i·37-s + 10.1·41-s − 5.52i·43-s + 8.65i·47-s + 7·49-s + 6.77i·53-s + ⋯
L(s)  = 1  + (−0.193 + 0.981i)5-s + 0.863·11-s − 0.277i·13-s + 1.33i·17-s − 0.808·19-s − 1.56i·23-s + (−0.925 − 0.379i)25-s + 1.25·29-s + 1.02·31-s + 0.613i·37-s + 1.58·41-s − 0.842i·43-s + 1.26i·47-s + 49-s + 0.930i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.193 - 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.193 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4680\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $0.193 - 0.981i$
Analytic conductor: \(37.3699\)
Root analytic conductor: \(6.11309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4680} (2809, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4680,\ (\ :1/2),\ 0.193 - 0.981i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.801061854\)
\(L(\frac12)\) \(\approx\) \(1.801061854\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (0.432 - 2.19i)T \)
13 \( 1 + iT \)
good7 \( 1 - 7T^{2} \)
11 \( 1 - 2.86T + 11T^{2} \)
17 \( 1 - 5.52iT - 17T^{2} \)
19 \( 1 + 3.52T + 19T^{2} \)
23 \( 1 + 7.52iT - 23T^{2} \)
29 \( 1 - 6.77T + 29T^{2} \)
31 \( 1 - 5.72T + 31T^{2} \)
37 \( 1 - 3.72iT - 37T^{2} \)
41 \( 1 - 10.1T + 41T^{2} \)
43 \( 1 + 5.52iT - 43T^{2} \)
47 \( 1 - 8.65iT - 47T^{2} \)
53 \( 1 - 6.77iT - 53T^{2} \)
59 \( 1 - 0.593T + 59T^{2} \)
61 \( 1 + 5.25T + 61T^{2} \)
67 \( 1 - 10.5iT - 67T^{2} \)
71 \( 1 - 2.38T + 71T^{2} \)
73 \( 1 - 5.45iT - 73T^{2} \)
79 \( 1 + 2.47T + 79T^{2} \)
83 \( 1 + 8.11iT - 83T^{2} \)
89 \( 1 + 14.1T + 89T^{2} \)
97 \( 1 + 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.425120743073341628868273339490, −7.79400609123136420726740042124, −6.83739152639280979666889543239, −6.35304221367034421979273785517, −5.85481012593241506975413612539, −4.38394205765901716660828495813, −4.13842918912213600175080120516, −2.97956226764813729100427102126, −2.33132382598715334318289327529, −1.03386278589994126815067191048, 0.59243593757709679059700618896, 1.54079912051774152703859307490, 2.65458032746447290560620701111, 3.75685407349228408381358467755, 4.43441508361631149398344838610, 5.09840545324127403708726290904, 5.93020585797601907393633195346, 6.72220424177298598955374694829, 7.47260936783346338712087983172, 8.200723662411147341530368792946

Graph of the $Z$-function along the critical line