| L(s) = 1 | + (1.61 − 0.613i)3-s + (−2.41 − 1.39i)5-s + (1.00 − 0.582i)7-s + (2.24 − 1.98i)9-s + (−0.716 + 0.413i)11-s + (3.28 − 1.48i)13-s + (−4.76 − 0.775i)15-s + 0.0570·17-s − 8.44i·19-s + (1.27 − 1.56i)21-s + (−1.18 + 2.04i)23-s + (1.37 + 2.38i)25-s + (2.42 − 4.59i)27-s + (−2.67 − 4.62i)29-s + (−0.351 − 0.203i)31-s + ⋯ |
| L(s) = 1 | + (0.935 − 0.354i)3-s + (−1.07 − 0.622i)5-s + (0.381 − 0.219i)7-s + (0.749 − 0.662i)9-s + (−0.216 + 0.124i)11-s + (0.911 − 0.410i)13-s + (−1.22 − 0.200i)15-s + 0.0138·17-s − 1.93i·19-s + (0.278 − 0.340i)21-s + (−0.246 + 0.426i)23-s + (0.275 + 0.477i)25-s + (0.465 − 0.884i)27-s + (−0.495 − 0.858i)29-s + (−0.0631 − 0.0364i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.271 + 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.271 + 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.31557 - 0.995701i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.31557 - 0.995701i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.61 + 0.613i)T \) |
| 13 | \( 1 + (-3.28 + 1.48i)T \) |
| good | 5 | \( 1 + (2.41 + 1.39i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.00 + 0.582i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.716 - 0.413i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 0.0570T + 17T^{2} \) |
| 19 | \( 1 + 8.44iT - 19T^{2} \) |
| 23 | \( 1 + (1.18 - 2.04i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.67 + 4.62i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.351 + 0.203i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5.42iT - 37T^{2} \) |
| 41 | \( 1 + (-7.53 - 4.35i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.13 - 8.90i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (7.56 - 4.36i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 2.12T + 53T^{2} \) |
| 59 | \( 1 + (-9.68 - 5.58i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.225 + 0.389i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.02 - 4.63i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6.15iT - 71T^{2} \) |
| 73 | \( 1 + 8.45iT - 73T^{2} \) |
| 79 | \( 1 + (-4.40 - 7.62i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-9.12 + 5.26i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 5.24iT - 89T^{2} \) |
| 97 | \( 1 + (-0.0761 + 0.0439i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.09830735237538102955856086365, −9.705969215527843994521208797281, −8.866574906917639714876021830099, −8.026379287087540490440730726684, −7.58353372702064739059565751018, −6.37448181013669015023185277901, −4.77535084600592584502737138160, −3.96436242549044687630698719879, −2.76055716314264569487038322677, −1.00782772544647225996645370186,
2.00106643257047654431058094391, 3.55104051566561665643872999895, 3.95213852968429091169480720570, 5.45598866657797814900274447212, 6.84838400767920279290385084691, 7.85092057636697169115999128855, 8.325640002616670212193321867543, 9.306620949759630459868544819698, 10.46973686505724767314265117421, 11.02353945558056040554982314402