Properties

Label 468.2.bl.b.337.11
Level $468$
Weight $2$
Character 468.337
Analytic conductor $3.737$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(25,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 337.11
Character \(\chi\) \(=\) 468.337
Dual form 468.2.bl.b.25.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61974 - 0.613557i) q^{3} +(-2.41165 - 1.39237i) q^{5} +(1.00812 - 0.582041i) q^{7} +(2.24710 - 1.98760i) q^{9} +(-0.716675 + 0.413773i) q^{11} +(3.28700 - 1.48177i) q^{13} +(-4.76054 - 0.775584i) q^{15} +0.0570022 q^{17} -8.44213i q^{19} +(1.27578 - 1.56130i) q^{21} +(-1.18075 + 2.04511i) q^{23} +(1.37737 + 2.38568i) q^{25} +(2.42020 - 4.59811i) q^{27} +(-2.67021 - 4.62494i) q^{29} +(-0.351625 - 0.203011i) q^{31} +(-0.906952 + 1.10992i) q^{33} -3.24166 q^{35} +5.42478i q^{37} +(4.41492 - 4.41684i) q^{39} +(7.53743 + 4.35174i) q^{41} +(5.13879 + 8.90065i) q^{43} +(-8.18668 + 1.66462i) q^{45} +(-7.56840 + 4.36962i) q^{47} +(-2.82246 + 4.88864i) q^{49} +(0.0923285 - 0.0349741i) q^{51} -2.12542 q^{53} +2.30449 q^{55} +(-5.17973 - 13.6740i) q^{57} +(9.68012 + 5.58882i) q^{59} +(-0.225124 - 0.389927i) q^{61} +(1.10849 - 3.31165i) q^{63} +(-9.99026 - 1.00319i) q^{65} +(8.02892 + 4.63550i) q^{67} +(-0.657706 + 4.03700i) q^{69} +6.15280i q^{71} -8.45487i q^{73} +(3.69473 + 3.01907i) q^{75} +(-0.481665 + 0.834269i) q^{77} +(4.40104 + 7.62283i) q^{79} +(1.09888 - 8.93266i) q^{81} +(9.12486 - 5.26824i) q^{83} +(-0.137469 - 0.0793679i) q^{85} +(-7.16270 - 5.85286i) q^{87} -5.24698i q^{89} +(2.45125 - 3.40698i) q^{91} +(-0.694098 - 0.113082i) q^{93} +(-11.7545 + 20.3595i) q^{95} +(0.0761512 - 0.0439659i) q^{97} +(-0.788023 + 2.35425i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 6 q^{3} + 2 q^{9} + 5 q^{13} - 4 q^{17} - 22 q^{23} + 16 q^{25} - 18 q^{27} + 22 q^{29} + 8 q^{35} + 37 q^{39} - 2 q^{43} + 22 q^{49} - 38 q^{51} - 12 q^{53} + 48 q^{55} + 8 q^{61} - q^{65} - 26 q^{69}+ \cdots - 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.61974 0.613557i 0.935156 0.354237i
\(4\) 0 0
\(5\) −2.41165 1.39237i −1.07852 0.622685i −0.148025 0.988984i \(-0.547292\pi\)
−0.930498 + 0.366298i \(0.880625\pi\)
\(6\) 0 0
\(7\) 1.00812 0.582041i 0.381035 0.219991i −0.297233 0.954805i \(-0.596064\pi\)
0.678269 + 0.734814i \(0.262731\pi\)
\(8\) 0 0
\(9\) 2.24710 1.98760i 0.749032 0.662534i
\(10\) 0 0
\(11\) −0.716675 + 0.413773i −0.216086 + 0.124757i −0.604136 0.796881i \(-0.706482\pi\)
0.388051 + 0.921638i \(0.373148\pi\)
\(12\) 0 0
\(13\) 3.28700 1.48177i 0.911649 0.410970i
\(14\) 0 0
\(15\) −4.76054 0.775584i −1.22916 0.200255i
\(16\) 0 0
\(17\) 0.0570022 0.0138251 0.00691253 0.999976i \(-0.497800\pi\)
0.00691253 + 0.999976i \(0.497800\pi\)
\(18\) 0 0
\(19\) 8.44213i 1.93676i −0.249484 0.968379i \(-0.580261\pi\)
0.249484 0.968379i \(-0.419739\pi\)
\(20\) 0 0
\(21\) 1.27578 1.56130i 0.278398 0.340703i
\(22\) 0 0
\(23\) −1.18075 + 2.04511i −0.246203 + 0.426436i −0.962469 0.271391i \(-0.912516\pi\)
0.716266 + 0.697827i \(0.245850\pi\)
\(24\) 0 0
\(25\) 1.37737 + 2.38568i 0.275474 + 0.477135i
\(26\) 0 0
\(27\) 2.42020 4.59811i 0.465767 0.884907i
\(28\) 0 0
\(29\) −2.67021 4.62494i −0.495846 0.858830i 0.504143 0.863620i \(-0.331808\pi\)
−0.999989 + 0.00479056i \(0.998475\pi\)
\(30\) 0 0
\(31\) −0.351625 0.203011i −0.0631536 0.0364618i 0.468091 0.883680i \(-0.344942\pi\)
−0.531244 + 0.847219i \(0.678275\pi\)
\(32\) 0 0
\(33\) −0.906952 + 1.10992i −0.157880 + 0.193213i
\(34\) 0 0
\(35\) −3.24166 −0.547940
\(36\) 0 0
\(37\) 5.42478i 0.891829i 0.895076 + 0.445915i \(0.147121\pi\)
−0.895076 + 0.445915i \(0.852879\pi\)
\(38\) 0 0
\(39\) 4.41492 4.41684i 0.706953 0.707261i
\(40\) 0 0
\(41\) 7.53743 + 4.35174i 1.17715 + 0.679627i 0.955353 0.295466i \(-0.0954750\pi\)
0.221795 + 0.975093i \(0.428808\pi\)
\(42\) 0 0
\(43\) 5.13879 + 8.90065i 0.783659 + 1.35734i 0.929797 + 0.368072i \(0.119982\pi\)
−0.146139 + 0.989264i \(0.546685\pi\)
\(44\) 0 0
\(45\) −8.18668 + 1.66462i −1.22040 + 0.248146i
\(46\) 0 0
\(47\) −7.56840 + 4.36962i −1.10396 + 0.637374i −0.937259 0.348633i \(-0.886646\pi\)
−0.166705 + 0.986007i \(0.553313\pi\)
\(48\) 0 0
\(49\) −2.82246 + 4.88864i −0.403208 + 0.698377i
\(50\) 0 0
\(51\) 0.0923285 0.0349741i 0.0129286 0.00489735i
\(52\) 0 0
\(53\) −2.12542 −0.291949 −0.145975 0.989288i \(-0.546632\pi\)
−0.145975 + 0.989288i \(0.546632\pi\)
\(54\) 0 0
\(55\) 2.30449 0.310738
\(56\) 0 0
\(57\) −5.17973 13.6740i −0.686072 1.81117i
\(58\) 0 0
\(59\) 9.68012 + 5.58882i 1.26024 + 0.727602i 0.973122 0.230292i \(-0.0739680\pi\)
0.287122 + 0.957894i \(0.407301\pi\)
\(60\) 0 0
\(61\) −0.225124 0.389927i −0.0288242 0.0499250i 0.851253 0.524755i \(-0.175843\pi\)
−0.880078 + 0.474830i \(0.842510\pi\)
\(62\) 0 0
\(63\) 1.10849 3.31165i 0.139656 0.417229i
\(64\) 0 0
\(65\) −9.99026 1.00319i −1.23914 0.124431i
\(66\) 0 0
\(67\) 8.02892 + 4.63550i 0.980889 + 0.566316i 0.902538 0.430610i \(-0.141701\pi\)
0.0783503 + 0.996926i \(0.475035\pi\)
\(68\) 0 0
\(69\) −0.657706 + 4.03700i −0.0791785 + 0.485998i
\(70\) 0 0
\(71\) 6.15280i 0.730203i 0.930968 + 0.365102i \(0.118966\pi\)
−0.930968 + 0.365102i \(0.881034\pi\)
\(72\) 0 0
\(73\) 8.45487i 0.989567i −0.869016 0.494784i \(-0.835247\pi\)
0.869016 0.494784i \(-0.164753\pi\)
\(74\) 0 0
\(75\) 3.69473 + 3.01907i 0.426630 + 0.348612i
\(76\) 0 0
\(77\) −0.481665 + 0.834269i −0.0548909 + 0.0950738i
\(78\) 0 0
\(79\) 4.40104 + 7.62283i 0.495156 + 0.857635i 0.999984 0.00558427i \(-0.00177754\pi\)
−0.504828 + 0.863220i \(0.668444\pi\)
\(80\) 0 0
\(81\) 1.09888 8.93266i 0.122098 0.992518i
\(82\) 0 0
\(83\) 9.12486 5.26824i 1.00158 0.578264i 0.0928671 0.995679i \(-0.470397\pi\)
0.908716 + 0.417414i \(0.137064\pi\)
\(84\) 0 0
\(85\) −0.137469 0.0793679i −0.0149106 0.00860866i
\(86\) 0 0
\(87\) −7.16270 5.85286i −0.767922 0.627492i
\(88\) 0 0
\(89\) 5.24698i 0.556179i −0.960555 0.278090i \(-0.910299\pi\)
0.960555 0.278090i \(-0.0897012\pi\)
\(90\) 0 0
\(91\) 2.45125 3.40698i 0.256961 0.357148i
\(92\) 0 0
\(93\) −0.694098 0.113082i −0.0719746 0.0117261i
\(94\) 0 0
\(95\) −11.7545 + 20.3595i −1.20599 + 2.08884i
\(96\) 0 0
\(97\) 0.0761512 0.0439659i 0.00773198 0.00446406i −0.496129 0.868249i \(-0.665246\pi\)
0.503861 + 0.863785i \(0.331912\pi\)
\(98\) 0 0
\(99\) −0.788023 + 2.35425i −0.0791993 + 0.236611i
\(100\) 0 0
\(101\) −7.39899 12.8154i −0.736227 1.27518i −0.954183 0.299225i \(-0.903272\pi\)
0.217955 0.975959i \(-0.430061\pi\)
\(102\) 0 0
\(103\) −3.68863 + 6.38889i −0.363452 + 0.629516i −0.988526 0.151048i \(-0.951735\pi\)
0.625075 + 0.780565i \(0.285068\pi\)
\(104\) 0 0
\(105\) −5.25064 + 1.98894i −0.512410 + 0.194101i
\(106\) 0 0
\(107\) 2.04176 0.197384 0.0986921 0.995118i \(-0.468534\pi\)
0.0986921 + 0.995118i \(0.468534\pi\)
\(108\) 0 0
\(109\) 10.9783i 1.05153i 0.850631 + 0.525763i \(0.176220\pi\)
−0.850631 + 0.525763i \(0.823780\pi\)
\(110\) 0 0
\(111\) 3.32841 + 8.78672i 0.315919 + 0.833999i
\(112\) 0 0
\(113\) 0.921748 1.59651i 0.0867107 0.150187i −0.819408 0.573210i \(-0.805698\pi\)
0.906119 + 0.423023i \(0.139031\pi\)
\(114\) 0 0
\(115\) 5.69510 3.28807i 0.531071 0.306614i
\(116\) 0 0
\(117\) 4.44103 9.86292i 0.410573 0.911828i
\(118\) 0 0
\(119\) 0.0574653 0.0331776i 0.00526784 0.00304139i
\(120\) 0 0
\(121\) −5.15758 + 8.93320i −0.468871 + 0.812109i
\(122\) 0 0
\(123\) 14.8787 + 2.42403i 1.34157 + 0.218567i
\(124\) 0 0
\(125\) 6.25245i 0.559236i
\(126\) 0 0
\(127\) −4.86492 −0.431692 −0.215846 0.976427i \(-0.569251\pi\)
−0.215846 + 0.976427i \(0.569251\pi\)
\(128\) 0 0
\(129\) 13.7845 + 11.2638i 1.21366 + 0.991720i
\(130\) 0 0
\(131\) −9.48259 + 16.4243i −0.828497 + 1.43500i 0.0707195 + 0.997496i \(0.477470\pi\)
−0.899217 + 0.437503i \(0.855863\pi\)
\(132\) 0 0
\(133\) −4.91367 8.51072i −0.426069 0.737973i
\(134\) 0 0
\(135\) −12.2389 + 7.71924i −1.05336 + 0.664366i
\(136\) 0 0
\(137\) −11.2785 + 6.51163i −0.963585 + 0.556326i −0.897275 0.441473i \(-0.854456\pi\)
−0.0663107 + 0.997799i \(0.521123\pi\)
\(138\) 0 0
\(139\) 3.17067 5.49176i 0.268932 0.465805i −0.699654 0.714482i \(-0.746663\pi\)
0.968586 + 0.248677i \(0.0799958\pi\)
\(140\) 0 0
\(141\) −9.57780 + 11.7213i −0.806597 + 0.987109i
\(142\) 0 0
\(143\) −1.74259 + 2.42202i −0.145723 + 0.202539i
\(144\) 0 0
\(145\) 14.8716i 1.23502i
\(146\) 0 0
\(147\) −1.57218 + 9.65004i −0.129671 + 0.795922i
\(148\) 0 0
\(149\) −12.8659 7.42814i −1.05402 0.608537i −0.130245 0.991482i \(-0.541576\pi\)
−0.923771 + 0.382945i \(0.874910\pi\)
\(150\) 0 0
\(151\) 9.47215 5.46875i 0.770833 0.445041i −0.0623387 0.998055i \(-0.519856\pi\)
0.833172 + 0.553014i \(0.186523\pi\)
\(152\) 0 0
\(153\) 0.128089 0.113298i 0.0103554 0.00915957i
\(154\) 0 0
\(155\) 0.565330 + 0.979181i 0.0454084 + 0.0786497i
\(156\) 0 0
\(157\) 1.54287 2.67234i 0.123135 0.213276i −0.797868 0.602833i \(-0.794039\pi\)
0.921002 + 0.389557i \(0.127372\pi\)
\(158\) 0 0
\(159\) −3.44263 + 1.30407i −0.273018 + 0.103419i
\(160\) 0 0
\(161\) 2.74897i 0.216650i
\(162\) 0 0
\(163\) 7.89895i 0.618694i −0.950949 0.309347i \(-0.899890\pi\)
0.950949 0.309347i \(-0.100110\pi\)
\(164\) 0 0
\(165\) 3.73267 1.41394i 0.290588 0.110075i
\(166\) 0 0
\(167\) 12.5292 + 7.23372i 0.969536 + 0.559762i 0.899095 0.437754i \(-0.144226\pi\)
0.0704412 + 0.997516i \(0.477559\pi\)
\(168\) 0 0
\(169\) 8.60870 9.74116i 0.662208 0.749320i
\(170\) 0 0
\(171\) −16.7796 18.9703i −1.28317 1.45069i
\(172\) 0 0
\(173\) 5.63954 + 9.76797i 0.428766 + 0.742645i 0.996764 0.0803854i \(-0.0256151\pi\)
−0.567998 + 0.823030i \(0.692282\pi\)
\(174\) 0 0
\(175\) 2.77712 + 1.60337i 0.209931 + 0.121204i
\(176\) 0 0
\(177\) 19.1083 + 3.11311i 1.43627 + 0.233996i
\(178\) 0 0
\(179\) 19.2349 1.43768 0.718840 0.695175i \(-0.244673\pi\)
0.718840 + 0.695175i \(0.244673\pi\)
\(180\) 0 0
\(181\) −8.00126 −0.594729 −0.297365 0.954764i \(-0.596108\pi\)
−0.297365 + 0.954764i \(0.596108\pi\)
\(182\) 0 0
\(183\) −0.603884 0.493452i −0.0446404 0.0364770i
\(184\) 0 0
\(185\) 7.55329 13.0827i 0.555329 0.961858i
\(186\) 0 0
\(187\) −0.0408520 + 0.0235859i −0.00298740 + 0.00172477i
\(188\) 0 0
\(189\) −0.236429 6.04413i −0.0171977 0.439646i
\(190\) 0 0
\(191\) −12.7333 22.0547i −0.921349 1.59582i −0.797330 0.603543i \(-0.793755\pi\)
−0.124019 0.992280i \(-0.539578\pi\)
\(192\) 0 0
\(193\) −14.5610 8.40682i −1.04813 0.605136i −0.126002 0.992030i \(-0.540215\pi\)
−0.922124 + 0.386894i \(0.873548\pi\)
\(194\) 0 0
\(195\) −16.7971 + 4.50469i −1.20287 + 0.322587i
\(196\) 0 0
\(197\) 25.3622i 1.80698i −0.428610 0.903489i \(-0.640997\pi\)
0.428610 0.903489i \(-0.359003\pi\)
\(198\) 0 0
\(199\) 9.28901 0.658480 0.329240 0.944246i \(-0.393207\pi\)
0.329240 + 0.944246i \(0.393207\pi\)
\(200\) 0 0
\(201\) 15.8489 + 2.58209i 1.11789 + 0.182127i
\(202\) 0 0
\(203\) −5.38381 3.10834i −0.377869 0.218163i
\(204\) 0 0
\(205\) −12.1184 20.9897i −0.846387 1.46599i
\(206\) 0 0
\(207\) 1.41162 + 6.94242i 0.0981143 + 0.482532i
\(208\) 0 0
\(209\) 3.49312 + 6.05027i 0.241624 + 0.418506i
\(210\) 0 0
\(211\) 0.938966 1.62634i 0.0646411 0.111962i −0.831894 0.554935i \(-0.812743\pi\)
0.896535 + 0.442973i \(0.146076\pi\)
\(212\) 0 0
\(213\) 3.77509 + 9.96592i 0.258665 + 0.682854i
\(214\) 0 0
\(215\) 28.6203i 1.95189i
\(216\) 0 0
\(217\) −0.472642 −0.0320850
\(218\) 0 0
\(219\) −5.18754 13.6947i −0.350542 0.925399i
\(220\) 0 0
\(221\) 0.187366 0.0844642i 0.0126036 0.00568168i
\(222\) 0 0
\(223\) −18.3925 + 10.6189i −1.23165 + 0.711094i −0.967374 0.253353i \(-0.918466\pi\)
−0.264276 + 0.964447i \(0.585133\pi\)
\(224\) 0 0
\(225\) 7.83686 + 2.62318i 0.522457 + 0.174879i
\(226\) 0 0
\(227\) −4.95045 + 2.85814i −0.328573 + 0.189702i −0.655207 0.755449i \(-0.727419\pi\)
0.326635 + 0.945151i \(0.394085\pi\)
\(228\) 0 0
\(229\) −12.3566 7.13409i −0.816548 0.471434i 0.0326767 0.999466i \(-0.489597\pi\)
−0.849225 + 0.528032i \(0.822930\pi\)
\(230\) 0 0
\(231\) −0.268300 + 1.64683i −0.0176528 + 0.108353i
\(232\) 0 0
\(233\) 21.4720 1.40668 0.703339 0.710855i \(-0.251692\pi\)
0.703339 + 0.710855i \(0.251692\pi\)
\(234\) 0 0
\(235\) 24.3364 1.58753
\(236\) 0 0
\(237\) 11.8056 + 9.64669i 0.766854 + 0.626620i
\(238\) 0 0
\(239\) 15.9300 + 9.19721i 1.03043 + 0.594918i 0.917107 0.398640i \(-0.130518\pi\)
0.113321 + 0.993558i \(0.463851\pi\)
\(240\) 0 0
\(241\) −17.2448 + 9.95630i −1.11084 + 0.641342i −0.939046 0.343792i \(-0.888289\pi\)
−0.171791 + 0.985133i \(0.554955\pi\)
\(242\) 0 0
\(243\) −3.70080 15.1428i −0.237406 0.971410i
\(244\) 0 0
\(245\) 13.6136 7.85979i 0.869738 0.502143i
\(246\) 0 0
\(247\) −12.5093 27.7493i −0.795949 1.76564i
\(248\) 0 0
\(249\) 11.5475 14.1318i 0.731794 0.895565i
\(250\) 0 0
\(251\) 13.5673 0.856361 0.428180 0.903693i \(-0.359155\pi\)
0.428180 + 0.903693i \(0.359155\pi\)
\(252\) 0 0
\(253\) 1.95424i 0.122862i
\(254\) 0 0
\(255\) −0.271361 0.0442100i −0.0169933 0.00276854i
\(256\) 0 0
\(257\) 13.4387 23.2765i 0.838284 1.45195i −0.0530440 0.998592i \(-0.516892\pi\)
0.891328 0.453359i \(-0.149774\pi\)
\(258\) 0 0
\(259\) 3.15745 + 5.46886i 0.196194 + 0.339818i
\(260\) 0 0
\(261\) −15.1928 5.08537i −0.940408 0.314776i
\(262\) 0 0
\(263\) 2.98437 + 5.16909i 0.184024 + 0.318740i 0.943247 0.332091i \(-0.107754\pi\)
−0.759223 + 0.650831i \(0.774421\pi\)
\(264\) 0 0
\(265\) 5.12578 + 2.95937i 0.314874 + 0.181793i
\(266\) 0 0
\(267\) −3.21932 8.49873i −0.197019 0.520114i
\(268\) 0 0
\(269\) 21.3267 1.30031 0.650155 0.759802i \(-0.274704\pi\)
0.650155 + 0.759802i \(0.274704\pi\)
\(270\) 0 0
\(271\) 8.47863i 0.515040i 0.966273 + 0.257520i \(0.0829053\pi\)
−0.966273 + 0.257520i \(0.917095\pi\)
\(272\) 0 0
\(273\) 1.88001 7.02239i 0.113783 0.425015i
\(274\) 0 0
\(275\) −1.97425 1.13984i −0.119052 0.0687347i
\(276\) 0 0
\(277\) 5.07822 + 8.79573i 0.305120 + 0.528484i 0.977288 0.211915i \(-0.0679699\pi\)
−0.672168 + 0.740399i \(0.734637\pi\)
\(278\) 0 0
\(279\) −1.19364 + 0.242705i −0.0714613 + 0.0145304i
\(280\) 0 0
\(281\) −13.8777 + 8.01231i −0.827876 + 0.477974i −0.853125 0.521707i \(-0.825295\pi\)
0.0252490 + 0.999681i \(0.491962\pi\)
\(282\) 0 0
\(283\) 4.22246 7.31351i 0.250999 0.434743i −0.712802 0.701365i \(-0.752574\pi\)
0.963801 + 0.266622i \(0.0859076\pi\)
\(284\) 0 0
\(285\) −6.54758 + 40.1891i −0.387845 + 2.38059i
\(286\) 0 0
\(287\) 10.1316 0.598047
\(288\) 0 0
\(289\) −16.9968 −0.999809
\(290\) 0 0
\(291\) 0.0963693 0.117936i 0.00564927 0.00691355i
\(292\) 0 0
\(293\) −5.90810 3.41104i −0.345155 0.199275i 0.317394 0.948294i \(-0.397192\pi\)
−0.662549 + 0.749018i \(0.730525\pi\)
\(294\) 0 0
\(295\) −15.5634 26.9566i −0.906135 1.56947i
\(296\) 0 0
\(297\) 0.168077 + 4.29676i 0.00975282 + 0.249324i
\(298\) 0 0
\(299\) −0.850720 + 8.47188i −0.0491984 + 0.489942i
\(300\) 0 0
\(301\) 10.3611 + 5.98198i 0.597203 + 0.344796i
\(302\) 0 0
\(303\) −19.8474 16.2179i −1.14020 0.931696i
\(304\) 0 0
\(305\) 1.25382i 0.0717937i
\(306\) 0 0
\(307\) 7.51889i 0.429125i 0.976710 + 0.214563i \(0.0688326\pi\)
−0.976710 + 0.214563i \(0.931167\pi\)
\(308\) 0 0
\(309\) −2.05466 + 12.6115i −0.116886 + 0.717444i
\(310\) 0 0
\(311\) −0.371290 + 0.643093i −0.0210539 + 0.0364665i −0.876360 0.481656i \(-0.840036\pi\)
0.855306 + 0.518122i \(0.173369\pi\)
\(312\) 0 0
\(313\) −0.511692 0.886276i −0.0289225 0.0500953i 0.851202 0.524838i \(-0.175874\pi\)
−0.880124 + 0.474743i \(0.842541\pi\)
\(314\) 0 0
\(315\) −7.28432 + 6.44313i −0.410425 + 0.363029i
\(316\) 0 0
\(317\) 2.44262 1.41025i 0.137191 0.0792073i −0.429834 0.902908i \(-0.641428\pi\)
0.567025 + 0.823701i \(0.308094\pi\)
\(318\) 0 0
\(319\) 3.82735 + 2.20972i 0.214290 + 0.123721i
\(320\) 0 0
\(321\) 3.30711 1.25273i 0.184585 0.0699208i
\(322\) 0 0
\(323\) 0.481220i 0.0267758i
\(324\) 0 0
\(325\) 8.06244 + 5.80076i 0.447224 + 0.321768i
\(326\) 0 0
\(327\) 6.73579 + 17.7819i 0.372490 + 0.983341i
\(328\) 0 0
\(329\) −5.08659 + 8.81024i −0.280433 + 0.485724i
\(330\) 0 0
\(331\) −22.6827 + 13.0959i −1.24676 + 0.719815i −0.970461 0.241258i \(-0.922440\pi\)
−0.276295 + 0.961073i \(0.589107\pi\)
\(332\) 0 0
\(333\) 10.7823 + 12.1900i 0.590867 + 0.668009i
\(334\) 0 0
\(335\) −12.9086 22.3584i −0.705274 1.22157i
\(336\) 0 0
\(337\) −14.5102 + 25.1323i −0.790418 + 1.36904i 0.135290 + 0.990806i \(0.456803\pi\)
−0.925708 + 0.378239i \(0.876530\pi\)
\(338\) 0 0
\(339\) 0.513437 3.15148i 0.0278861 0.171165i
\(340\) 0 0
\(341\) 0.336001 0.0181955
\(342\) 0 0
\(343\) 14.7197i 0.794790i
\(344\) 0 0
\(345\) 7.20715 8.82007i 0.388020 0.474857i
\(346\) 0 0
\(347\) −1.34270 + 2.32563i −0.0720801 + 0.124846i −0.899813 0.436276i \(-0.856297\pi\)
0.827733 + 0.561123i \(0.189630\pi\)
\(348\) 0 0
\(349\) 6.19331 3.57571i 0.331520 0.191403i −0.324996 0.945715i \(-0.605363\pi\)
0.656516 + 0.754312i \(0.272030\pi\)
\(350\) 0 0
\(351\) 1.14183 18.7002i 0.0609464 0.998141i
\(352\) 0 0
\(353\) 9.09836 5.25294i 0.484257 0.279586i −0.237932 0.971282i \(-0.576469\pi\)
0.722189 + 0.691696i \(0.243136\pi\)
\(354\) 0 0
\(355\) 8.56696 14.8384i 0.454687 0.787541i
\(356\) 0 0
\(357\) 0.0727223 0.0889973i 0.00384887 0.00471023i
\(358\) 0 0
\(359\) 18.6468i 0.984141i −0.870555 0.492070i \(-0.836240\pi\)
0.870555 0.492070i \(-0.163760\pi\)
\(360\) 0 0
\(361\) −52.2696 −2.75103
\(362\) 0 0
\(363\) −2.87291 + 17.6339i −0.150788 + 0.925540i
\(364\) 0 0
\(365\) −11.7723 + 20.3902i −0.616189 + 1.06727i
\(366\) 0 0
\(367\) 1.69546 + 2.93662i 0.0885023 + 0.153290i 0.906878 0.421393i \(-0.138459\pi\)
−0.818376 + 0.574683i \(0.805125\pi\)
\(368\) 0 0
\(369\) 25.5868 5.20263i 1.33200 0.270838i
\(370\) 0 0
\(371\) −2.14269 + 1.23708i −0.111243 + 0.0642262i
\(372\) 0 0
\(373\) 15.7393 27.2613i 0.814950 1.41153i −0.0944144 0.995533i \(-0.530098\pi\)
0.909364 0.416001i \(-0.136569\pi\)
\(374\) 0 0
\(375\) 3.83623 + 10.1273i 0.198102 + 0.522973i
\(376\) 0 0
\(377\) −15.6301 11.2455i −0.804990 0.579174i
\(378\) 0 0
\(379\) 28.3567i 1.45658i −0.685267 0.728292i \(-0.740314\pi\)
0.685267 0.728292i \(-0.259686\pi\)
\(380\) 0 0
\(381\) −7.87989 + 2.98491i −0.403699 + 0.152921i
\(382\) 0 0
\(383\) 18.0655 + 10.4301i 0.923106 + 0.532956i 0.884625 0.466304i \(-0.154415\pi\)
0.0384816 + 0.999259i \(0.487748\pi\)
\(384\) 0 0
\(385\) 2.32322 1.34131i 0.118402 0.0683595i
\(386\) 0 0
\(387\) 29.2383 + 9.78674i 1.48627 + 0.497488i
\(388\) 0 0
\(389\) 11.4705 + 19.8676i 0.581580 + 1.00733i 0.995292 + 0.0969184i \(0.0308986\pi\)
−0.413712 + 0.910408i \(0.635768\pi\)
\(390\) 0 0
\(391\) −0.0673052 + 0.116576i −0.00340377 + 0.00589550i
\(392\) 0 0
\(393\) −5.28204 + 32.4212i −0.266444 + 1.63543i
\(394\) 0 0
\(395\) 24.5115i 1.23331i
\(396\) 0 0
\(397\) 14.4766i 0.726562i −0.931680 0.363281i \(-0.881657\pi\)
0.931680 0.363281i \(-0.118343\pi\)
\(398\) 0 0
\(399\) −13.1807 10.7703i −0.659859 0.539190i
\(400\) 0 0
\(401\) −28.4504 16.4259i −1.42075 0.820268i −0.424383 0.905483i \(-0.639509\pi\)
−0.996363 + 0.0852145i \(0.972842\pi\)
\(402\) 0 0
\(403\) −1.45660 0.146268i −0.0725586 0.00728611i
\(404\) 0 0
\(405\) −15.0877 + 20.0124i −0.749712 + 0.994425i
\(406\) 0 0
\(407\) −2.24463 3.88781i −0.111262 0.192711i
\(408\) 0 0
\(409\) 26.2128 + 15.1340i 1.29614 + 0.748327i 0.979735 0.200297i \(-0.0641909\pi\)
0.316405 + 0.948624i \(0.397524\pi\)
\(410\) 0 0
\(411\) −14.2729 + 17.4671i −0.704031 + 0.861589i
\(412\) 0 0
\(413\) 13.0117 0.640264
\(414\) 0 0
\(415\) −29.3413 −1.44031
\(416\) 0 0
\(417\) 1.76614 10.8406i 0.0864883 0.530866i
\(418\) 0 0
\(419\) −0.634571 + 1.09911i −0.0310008 + 0.0536950i −0.881110 0.472912i \(-0.843203\pi\)
0.850109 + 0.526607i \(0.176536\pi\)
\(420\) 0 0
\(421\) −4.45783 + 2.57373i −0.217261 + 0.125436i −0.604681 0.796467i \(-0.706700\pi\)
0.387420 + 0.921903i \(0.373366\pi\)
\(422\) 0 0
\(423\) −8.32186 + 24.8619i −0.404623 + 1.20883i
\(424\) 0 0
\(425\) 0.0785131 + 0.135989i 0.00380845 + 0.00659642i
\(426\) 0 0
\(427\) −0.453907 0.262063i −0.0219661 0.0126821i
\(428\) 0 0
\(429\) −1.33650 + 4.99221i −0.0645266 + 0.241026i
\(430\) 0 0
\(431\) 27.6418i 1.33146i 0.746193 + 0.665730i \(0.231880\pi\)
−0.746193 + 0.665730i \(0.768120\pi\)
\(432\) 0 0
\(433\) 28.6165 1.37522 0.687610 0.726080i \(-0.258660\pi\)
0.687610 + 0.726080i \(0.258660\pi\)
\(434\) 0 0
\(435\) 9.12460 + 24.0882i 0.437491 + 1.15494i
\(436\) 0 0
\(437\) 17.2651 + 9.96803i 0.825903 + 0.476835i
\(438\) 0 0
\(439\) −5.14544 8.91216i −0.245578 0.425354i 0.716716 0.697365i \(-0.245644\pi\)
−0.962294 + 0.272011i \(0.912311\pi\)
\(440\) 0 0
\(441\) 3.37433 + 16.5952i 0.160683 + 0.790246i
\(442\) 0 0
\(443\) 10.5570 + 18.2852i 0.501578 + 0.868758i 0.999998 + 0.00182269i \(0.000580182\pi\)
−0.498421 + 0.866935i \(0.666086\pi\)
\(444\) 0 0
\(445\) −7.30573 + 12.6539i −0.346325 + 0.599852i
\(446\) 0 0
\(447\) −25.3970 4.13766i −1.20124 0.195705i
\(448\) 0 0
\(449\) 30.5172i 1.44020i 0.693872 + 0.720099i \(0.255904\pi\)
−0.693872 + 0.720099i \(0.744096\pi\)
\(450\) 0 0
\(451\) −7.20251 −0.339153
\(452\) 0 0
\(453\) 11.9870 14.6696i 0.563199 0.689240i
\(454\) 0 0
\(455\) −10.6553 + 4.80340i −0.499529 + 0.225187i
\(456\) 0 0
\(457\) −10.8631 + 6.27183i −0.508156 + 0.293384i −0.732075 0.681224i \(-0.761448\pi\)
0.223919 + 0.974608i \(0.428115\pi\)
\(458\) 0 0
\(459\) 0.137957 0.262102i 0.00643926 0.0122339i
\(460\) 0 0
\(461\) 12.4016 7.16006i 0.577599 0.333477i −0.182580 0.983191i \(-0.558445\pi\)
0.760179 + 0.649714i \(0.225111\pi\)
\(462\) 0 0
\(463\) 7.05577 + 4.07365i 0.327909 + 0.189319i 0.654913 0.755705i \(-0.272705\pi\)
−0.327003 + 0.945023i \(0.606039\pi\)
\(464\) 0 0
\(465\) 1.51647 + 1.23915i 0.0703246 + 0.0574644i
\(466\) 0 0
\(467\) −2.80280 −0.129698 −0.0648491 0.997895i \(-0.520657\pi\)
−0.0648491 + 0.997895i \(0.520657\pi\)
\(468\) 0 0
\(469\) 10.7922 0.498338
\(470\) 0 0
\(471\) 0.859420 5.27512i 0.0396000 0.243065i
\(472\) 0 0
\(473\) −7.36569 4.25258i −0.338675 0.195534i
\(474\) 0 0
\(475\) 20.1402 11.6279i 0.924095 0.533527i
\(476\) 0 0
\(477\) −4.77603 + 4.22449i −0.218679 + 0.193426i
\(478\) 0 0
\(479\) −19.3809 + 11.1896i −0.885535 + 0.511264i −0.872479 0.488651i \(-0.837489\pi\)
−0.0130558 + 0.999915i \(0.504156\pi\)
\(480\) 0 0
\(481\) 8.03829 + 17.8313i 0.366515 + 0.813035i
\(482\) 0 0
\(483\) 1.68665 + 4.45262i 0.0767453 + 0.202601i
\(484\) 0 0
\(485\) −0.244867 −0.0111188
\(486\) 0 0
\(487\) 39.3335i 1.78237i −0.453640 0.891185i \(-0.649875\pi\)
0.453640 0.891185i \(-0.350125\pi\)
\(488\) 0 0
\(489\) −4.84646 12.7942i −0.219164 0.578575i
\(490\) 0 0
\(491\) 16.5130 28.6014i 0.745221 1.29076i −0.204870 0.978789i \(-0.565677\pi\)
0.950091 0.311972i \(-0.100989\pi\)
\(492\) 0 0
\(493\) −0.152208 0.263632i −0.00685509 0.0118734i
\(494\) 0 0
\(495\) 5.17842 4.58041i 0.232753 0.205874i
\(496\) 0 0
\(497\) 3.58118 + 6.20279i 0.160638 + 0.278233i
\(498\) 0 0
\(499\) −13.7223 7.92255i −0.614293 0.354662i 0.160351 0.987060i \(-0.448737\pi\)
−0.774644 + 0.632398i \(0.782071\pi\)
\(500\) 0 0
\(501\) 24.7322 + 4.02936i 1.10496 + 0.180019i
\(502\) 0 0
\(503\) −15.5341 −0.692631 −0.346316 0.938118i \(-0.612567\pi\)
−0.346316 + 0.938118i \(0.612567\pi\)
\(504\) 0 0
\(505\) 41.2085i 1.83375i
\(506\) 0 0
\(507\) 7.96708 21.0600i 0.353830 0.935310i
\(508\) 0 0
\(509\) −0.292155 0.168676i −0.0129496 0.00747643i 0.493511 0.869739i \(-0.335713\pi\)
−0.506461 + 0.862263i \(0.669047\pi\)
\(510\) 0 0
\(511\) −4.92108 8.52356i −0.217696 0.377060i
\(512\) 0 0
\(513\) −38.8179 20.4316i −1.71385 0.902079i
\(514\) 0 0
\(515\) 17.7914 10.2719i 0.783981 0.452632i
\(516\) 0 0
\(517\) 3.61605 6.26319i 0.159034 0.275455i
\(518\) 0 0
\(519\) 15.1278 + 12.3614i 0.664035 + 0.542603i
\(520\) 0 0
\(521\) −42.3817 −1.85678 −0.928388 0.371613i \(-0.878805\pi\)
−0.928388 + 0.371613i \(0.878805\pi\)
\(522\) 0 0
\(523\) −20.4121 −0.892557 −0.446279 0.894894i \(-0.647251\pi\)
−0.446279 + 0.894894i \(0.647251\pi\)
\(524\) 0 0
\(525\) 5.48197 + 0.893119i 0.239253 + 0.0389789i
\(526\) 0 0
\(527\) −0.0200434 0.0115720i −0.000873103 0.000504086i
\(528\) 0 0
\(529\) 8.71167 + 15.0891i 0.378768 + 0.656046i
\(530\) 0 0
\(531\) 32.8605 6.68160i 1.42602 0.289957i
\(532\) 0 0
\(533\) 31.2238 + 3.13540i 1.35245 + 0.135809i
\(534\) 0 0
\(535\) −4.92401 2.84288i −0.212883 0.122908i
\(536\) 0 0
\(537\) 31.1554 11.8017i 1.34446 0.509280i
\(538\) 0 0
\(539\) 4.67142i 0.201212i
\(540\) 0 0
\(541\) 7.27818i 0.312913i 0.987685 + 0.156457i \(0.0500072\pi\)
−0.987685 + 0.156457i \(0.949993\pi\)
\(542\) 0 0
\(543\) −12.9599 + 4.90923i −0.556164 + 0.210675i
\(544\) 0 0
\(545\) 15.2858 26.4757i 0.654770 1.13410i
\(546\) 0 0
\(547\) 21.3676 + 37.0098i 0.913614 + 1.58243i 0.808918 + 0.587921i \(0.200054\pi\)
0.104696 + 0.994504i \(0.466613\pi\)
\(548\) 0 0
\(549\) −1.28089 0.428745i −0.0546673 0.0182984i
\(550\) 0 0
\(551\) −39.0443 + 22.5423i −1.66335 + 0.960333i
\(552\) 0 0
\(553\) 8.87360 + 5.12318i 0.377344 + 0.217860i
\(554\) 0 0
\(555\) 4.20737 25.8249i 0.178593 1.09620i
\(556\) 0 0
\(557\) 19.6148i 0.831105i 0.909569 + 0.415552i \(0.136412\pi\)
−0.909569 + 0.415552i \(0.863588\pi\)
\(558\) 0 0
\(559\) 30.0799 + 21.6419i 1.27225 + 0.915355i
\(560\) 0 0
\(561\) −0.0516983 + 0.0632681i −0.00218270 + 0.00267118i
\(562\) 0 0
\(563\) −21.9568 + 38.0302i −0.925367 + 1.60278i −0.134397 + 0.990928i \(0.542910\pi\)
−0.790970 + 0.611855i \(0.790424\pi\)
\(564\) 0 0
\(565\) −4.44587 + 2.56682i −0.187039 + 0.107987i
\(566\) 0 0
\(567\) −4.09137 9.64483i −0.171821 0.405045i
\(568\) 0 0
\(569\) −20.0889 34.7950i −0.842171 1.45868i −0.888055 0.459736i \(-0.847944\pi\)
0.0458843 0.998947i \(-0.485389\pi\)
\(570\) 0 0
\(571\) −6.40209 + 11.0887i −0.267919 + 0.464049i −0.968324 0.249696i \(-0.919669\pi\)
0.700405 + 0.713745i \(0.253003\pi\)
\(572\) 0 0
\(573\) −34.1564 27.9102i −1.42690 1.16597i
\(574\) 0 0
\(575\) −6.50531 −0.271290
\(576\) 0 0
\(577\) 21.6624i 0.901816i −0.892570 0.450908i \(-0.851100\pi\)
0.892570 0.450908i \(-0.148900\pi\)
\(578\) 0 0
\(579\) −28.7431 4.68281i −1.19452 0.194611i
\(580\) 0 0
\(581\) 6.13267 10.6221i 0.254426 0.440678i
\(582\) 0 0
\(583\) 1.52324 0.879442i 0.0630861 0.0364228i
\(584\) 0 0
\(585\) −24.4430 + 17.6024i −1.01059 + 0.727769i
\(586\) 0 0
\(587\) 9.45422 5.45839i 0.390217 0.225292i −0.292037 0.956407i \(-0.594333\pi\)
0.682254 + 0.731115i \(0.261000\pi\)
\(588\) 0 0
\(589\) −1.71384 + 2.96846i −0.0706176 + 0.122313i
\(590\) 0 0
\(591\) −15.5611 41.0800i −0.640099 1.68981i
\(592\) 0 0
\(593\) 1.28924i 0.0529429i −0.999650 0.0264715i \(-0.991573\pi\)
0.999650 0.0264715i \(-0.00842711\pi\)
\(594\) 0 0
\(595\) −0.184782 −0.00757531
\(596\) 0 0
\(597\) 15.0457 5.69933i 0.615781 0.233258i
\(598\) 0 0
\(599\) −12.7091 + 22.0128i −0.519281 + 0.899420i 0.480468 + 0.877012i \(0.340467\pi\)
−0.999749 + 0.0224084i \(0.992867\pi\)
\(600\) 0 0
\(601\) 8.30319 + 14.3815i 0.338694 + 0.586635i 0.984187 0.177131i \(-0.0566815\pi\)
−0.645493 + 0.763766i \(0.723348\pi\)
\(602\) 0 0
\(603\) 27.2553 5.54188i 1.10992 0.225683i
\(604\) 0 0
\(605\) 24.8766 14.3625i 1.01138 0.583919i
\(606\) 0 0
\(607\) −14.9774 + 25.9416i −0.607914 + 1.05294i 0.383669 + 0.923471i \(0.374660\pi\)
−0.991584 + 0.129468i \(0.958673\pi\)
\(608\) 0 0
\(609\) −10.6275 1.73143i −0.430648 0.0701610i
\(610\) 0 0
\(611\) −18.4025 + 25.5775i −0.744486 + 1.03476i
\(612\) 0 0
\(613\) 40.3638i 1.63028i −0.579264 0.815140i \(-0.696660\pi\)
0.579264 0.815140i \(-0.303340\pi\)
\(614\) 0 0
\(615\) −32.5071 26.5625i −1.31081 1.07110i
\(616\) 0 0
\(617\) 1.30727 + 0.754755i 0.0526289 + 0.0303853i 0.526084 0.850433i \(-0.323660\pi\)
−0.473455 + 0.880818i \(0.656993\pi\)
\(618\) 0 0
\(619\) −22.1343 + 12.7792i −0.889651 + 0.513640i −0.873828 0.486235i \(-0.838370\pi\)
−0.0158227 + 0.999875i \(0.505037\pi\)
\(620\) 0 0
\(621\) 6.54602 + 10.3788i 0.262683 + 0.416487i
\(622\) 0 0
\(623\) −3.05396 5.28961i −0.122354 0.211924i
\(624\) 0 0
\(625\) 15.5926 27.0071i 0.623702 1.08028i
\(626\) 0 0
\(627\) 9.37012 + 7.65661i 0.374207 + 0.305776i
\(628\) 0 0
\(629\) 0.309225i 0.0123296i
\(630\) 0 0
\(631\) 40.1082i 1.59668i 0.602204 + 0.798342i \(0.294289\pi\)
−0.602204 + 0.798342i \(0.705711\pi\)
\(632\) 0 0
\(633\) 0.523028 3.21035i 0.0207885 0.127600i
\(634\) 0 0
\(635\) 11.7325 + 6.77375i 0.465589 + 0.268808i
\(636\) 0 0
\(637\) −2.03356 + 20.2512i −0.0805726 + 0.802381i
\(638\) 0 0
\(639\) 12.2293 + 13.8259i 0.483784 + 0.546946i
\(640\) 0 0
\(641\) −10.4289 18.0634i −0.411918 0.713463i 0.583182 0.812342i \(-0.301808\pi\)
−0.995099 + 0.0988791i \(0.968474\pi\)
\(642\) 0 0
\(643\) −13.8468 7.99443i −0.546063 0.315270i 0.201470 0.979495i \(-0.435428\pi\)
−0.747533 + 0.664225i \(0.768762\pi\)
\(644\) 0 0
\(645\) −17.5602 46.3574i −0.691432 1.82532i
\(646\) 0 0
\(647\) 41.0986 1.61575 0.807877 0.589351i \(-0.200617\pi\)
0.807877 + 0.589351i \(0.200617\pi\)
\(648\) 0 0
\(649\) −9.25000 −0.363094
\(650\) 0 0
\(651\) −0.765556 + 0.289993i −0.0300045 + 0.0113657i
\(652\) 0 0
\(653\) 17.0312 29.4989i 0.666483 1.15438i −0.312398 0.949951i \(-0.601132\pi\)
0.978881 0.204431i \(-0.0655345\pi\)
\(654\) 0 0
\(655\) 45.7374 26.4065i 1.78711 1.03179i
\(656\) 0 0
\(657\) −16.8049 18.9989i −0.655622 0.741217i
\(658\) 0 0
\(659\) −11.9493 20.6967i −0.465477 0.806230i 0.533746 0.845645i \(-0.320784\pi\)
−0.999223 + 0.0394152i \(0.987451\pi\)
\(660\) 0 0
\(661\) −1.54967 0.894700i −0.0602750 0.0347998i 0.469560 0.882901i \(-0.344413\pi\)
−0.529835 + 0.848101i \(0.677746\pi\)
\(662\) 0 0
\(663\) 0.251660 0.251770i 0.00977367 0.00977792i
\(664\) 0 0
\(665\) 27.3665i 1.06123i
\(666\) 0 0
\(667\) 12.6114 0.488314
\(668\) 0 0
\(669\) −23.2757 + 28.4846i −0.899889 + 1.10128i
\(670\) 0 0
\(671\) 0.322682 + 0.186301i 0.0124570 + 0.00719205i
\(672\) 0 0
\(673\) −8.93185 15.4704i −0.344298 0.596341i 0.640928 0.767601i \(-0.278550\pi\)
−0.985226 + 0.171260i \(0.945216\pi\)
\(674\) 0 0
\(675\) 14.3031 0.559497i 0.550527 0.0215350i
\(676\) 0 0
\(677\) 19.3289 + 33.4786i 0.742869 + 1.28669i 0.951184 + 0.308625i \(0.0998688\pi\)
−0.208315 + 0.978062i \(0.566798\pi\)
\(678\) 0 0
\(679\) 0.0511799 0.0886462i 0.00196411 0.00340193i
\(680\) 0 0
\(681\) −6.26479 + 7.66682i −0.240067 + 0.293793i
\(682\) 0 0
\(683\) 22.6437i 0.866438i 0.901289 + 0.433219i \(0.142622\pi\)
−0.901289 + 0.433219i \(0.857378\pi\)
\(684\) 0 0
\(685\) 36.2663 1.38566
\(686\) 0 0
\(687\) −24.3916 3.97387i −0.930599 0.151613i
\(688\) 0 0
\(689\) −6.98626 + 3.14939i −0.266155 + 0.119982i
\(690\) 0 0
\(691\) 29.5626 17.0680i 1.12462 0.649297i 0.182041 0.983291i \(-0.441730\pi\)
0.942575 + 0.333994i \(0.108396\pi\)
\(692\) 0 0
\(693\) 0.575846 + 2.83204i 0.0218746 + 0.107580i
\(694\) 0 0
\(695\) −15.2931 + 8.82946i −0.580099 + 0.334921i
\(696\) 0 0
\(697\) 0.429650 + 0.248058i 0.0162741 + 0.00939588i
\(698\) 0 0
\(699\) 34.7790 13.1743i 1.31546 0.498298i
\(700\) 0 0
\(701\) −30.5519 −1.15393 −0.576965 0.816769i \(-0.695763\pi\)
−0.576965 + 0.816769i \(0.695763\pi\)
\(702\) 0 0
\(703\) 45.7968 1.72726
\(704\) 0 0
\(705\) 39.4186 14.9318i 1.48459 0.562363i
\(706\) 0 0
\(707\) −14.9182 8.61304i −0.561057 0.323927i
\(708\) 0 0
\(709\) −6.97406 + 4.02648i −0.261916 + 0.151218i −0.625208 0.780458i \(-0.714986\pi\)
0.363292 + 0.931675i \(0.381653\pi\)
\(710\) 0 0
\(711\) 25.0407 + 8.38171i 0.939100 + 0.314339i
\(712\) 0 0
\(713\) 0.830360 0.479408i 0.0310972 0.0179540i
\(714\) 0 0
\(715\) 7.57486 3.41473i 0.283284 0.127704i
\(716\) 0 0
\(717\) 31.4455 + 5.12308i 1.17435 + 0.191325i
\(718\) 0 0
\(719\) 1.13026 0.0421515 0.0210757 0.999778i \(-0.493291\pi\)
0.0210757 + 0.999778i \(0.493291\pi\)
\(720\) 0 0
\(721\) 8.58774i 0.319824i
\(722\) 0 0
\(723\) −21.8233 + 26.7073i −0.811618 + 0.993254i
\(724\) 0 0
\(725\) 7.35574 12.7405i 0.273185 0.473171i
\(726\) 0 0
\(727\) −9.66960 16.7482i −0.358626 0.621158i 0.629106 0.777320i \(-0.283421\pi\)
−0.987732 + 0.156162i \(0.950088\pi\)
\(728\) 0 0
\(729\) −15.2853 22.2567i −0.566122 0.824322i
\(730\) 0 0
\(731\) 0.292922 + 0.507357i 0.0108341 + 0.0187653i
\(732\) 0 0
\(733\) −45.2652 26.1339i −1.67191 0.965276i −0.966570 0.256404i \(-0.917462\pi\)
−0.705337 0.708872i \(-0.749204\pi\)
\(734\) 0 0
\(735\) 17.2279 21.0835i 0.635462 0.777676i
\(736\) 0 0
\(737\) −7.67217 −0.282608
\(738\) 0 0
\(739\) 37.8316i 1.39166i −0.718207 0.695829i \(-0.755037\pi\)
0.718207 0.695829i \(-0.244963\pi\)
\(740\) 0 0
\(741\) −37.2876 37.2713i −1.36979 1.36920i
\(742\) 0 0
\(743\) −14.6017 8.43032i −0.535686 0.309278i 0.207643 0.978205i \(-0.433421\pi\)
−0.743329 + 0.668926i \(0.766754\pi\)
\(744\) 0 0
\(745\) 20.6854 + 35.8281i 0.757854 + 1.31264i
\(746\) 0 0
\(747\) 10.0333 29.9748i 0.367098 1.09672i
\(748\) 0 0
\(749\) 2.05835 1.18839i 0.0752104 0.0434227i
\(750\) 0 0
\(751\) −22.2277 + 38.4996i −0.811102 + 1.40487i 0.100991 + 0.994887i \(0.467799\pi\)
−0.912093 + 0.409983i \(0.865535\pi\)
\(752\) 0 0
\(753\) 21.9755 8.32431i 0.800830 0.303355i
\(754\) 0 0
\(755\) −30.4580 −1.10848
\(756\) 0 0
\(757\) 18.6044 0.676187 0.338094 0.941112i \(-0.390218\pi\)
0.338094 + 0.941112i \(0.390218\pi\)
\(758\) 0 0
\(759\) −1.19904 3.16536i −0.0435224 0.114895i
\(760\) 0 0
\(761\) −10.1160 5.84048i −0.366705 0.211717i 0.305313 0.952252i \(-0.401239\pi\)
−0.672018 + 0.740535i \(0.734572\pi\)
\(762\) 0 0
\(763\) 6.38980 + 11.0675i 0.231326 + 0.400669i
\(764\) 0 0
\(765\) −0.466659 + 0.0948868i −0.0168721 + 0.00343064i
\(766\) 0 0
\(767\) 40.0999 + 4.02671i 1.44792 + 0.145396i
\(768\) 0 0
\(769\) −0.140759 0.0812671i −0.00507589 0.00293057i 0.497460 0.867487i \(-0.334266\pi\)
−0.502536 + 0.864556i \(0.667599\pi\)
\(770\) 0 0
\(771\) 7.48571 45.9473i 0.269591 1.65475i
\(772\) 0 0
\(773\) 22.5752i 0.811974i −0.913879 0.405987i \(-0.866928\pi\)
0.913879 0.405987i \(-0.133072\pi\)
\(774\) 0 0
\(775\) 1.11848i 0.0401771i
\(776\) 0 0
\(777\) 8.46969 + 6.92084i 0.303849 + 0.248284i
\(778\) 0 0
\(779\) 36.7379 63.6320i 1.31627 2.27985i
\(780\) 0 0
\(781\) −2.54586 4.40956i −0.0910980 0.157786i
\(782\) 0 0
\(783\) −27.7284 + 1.08466i −0.990933 + 0.0387625i
\(784\) 0 0
\(785\) −7.44174 + 4.29649i −0.265607 + 0.153348i
\(786\) 0 0
\(787\) 26.0884 + 15.0621i 0.929951 + 0.536907i 0.886796 0.462161i \(-0.152926\pi\)
0.0431548 + 0.999068i \(0.486259\pi\)
\(788\) 0 0
\(789\) 8.00543 + 6.54148i 0.285001 + 0.232883i
\(790\) 0 0
\(791\) 2.14598i 0.0763023i
\(792\) 0 0
\(793\) −1.31777 0.948105i −0.0467952 0.0336682i
\(794\) 0 0
\(795\) 10.1182 + 1.64844i 0.358854 + 0.0584643i
\(796\) 0 0
\(797\) −16.8338 + 29.1570i −0.596285 + 1.03280i 0.397079 + 0.917784i \(0.370024\pi\)
−0.993364 + 0.115011i \(0.963310\pi\)
\(798\) 0 0
\(799\) −0.431415 + 0.249078i −0.0152624 + 0.00881173i
\(800\) 0 0
\(801\) −10.4289 11.7905i −0.368487 0.416596i
\(802\) 0 0
\(803\) 3.49839 + 6.05939i 0.123456 + 0.213831i
\(804\) 0 0
\(805\) 3.82758 6.62956i 0.134904 0.233661i
\(806\) 0 0
\(807\) 34.5436 13.0851i 1.21599 0.460618i
\(808\) 0 0
\(809\) −35.7648 −1.25742 −0.628712 0.777638i \(-0.716418\pi\)
−0.628712 + 0.777638i \(0.716418\pi\)
\(810\) 0 0
\(811\) 0.328149i 0.0115229i −0.999983 0.00576144i \(-0.998166\pi\)
0.999983 0.00576144i \(-0.00183393\pi\)
\(812\) 0 0
\(813\) 5.20212 + 13.7331i 0.182446 + 0.481642i
\(814\) 0 0
\(815\) −10.9982 + 19.0495i −0.385252 + 0.667275i
\(816\) 0 0
\(817\) 75.1405 43.3824i 2.62883 1.51776i
\(818\) 0 0
\(819\) −1.26352 12.5279i −0.0441509 0.437761i
\(820\) 0 0
\(821\) −43.7841 + 25.2787i −1.52807 + 0.882234i −0.528631 + 0.848852i \(0.677295\pi\)
−0.999443 + 0.0333824i \(0.989372\pi\)
\(822\) 0 0
\(823\) 8.63338 14.9534i 0.300941 0.521244i −0.675409 0.737444i \(-0.736033\pi\)
0.976349 + 0.216199i \(0.0693661\pi\)
\(824\) 0 0
\(825\) −3.89713 0.634918i −0.135681 0.0221050i
\(826\) 0 0
\(827\) 25.4686i 0.885630i −0.896613 0.442815i \(-0.853980\pi\)
0.896613 0.442815i \(-0.146020\pi\)
\(828\) 0 0
\(829\) −28.6937 −0.996573 −0.498287 0.867012i \(-0.666037\pi\)
−0.498287 + 0.867012i \(0.666037\pi\)
\(830\) 0 0
\(831\) 13.6221 + 11.1310i 0.472544 + 0.386130i
\(832\) 0 0
\(833\) −0.160886 + 0.278663i −0.00557437 + 0.00965510i
\(834\) 0 0
\(835\) −20.1440 34.8904i −0.697111 1.20743i
\(836\) 0 0
\(837\) −1.78447 + 1.12548i −0.0616802 + 0.0389024i
\(838\) 0 0
\(839\) −9.92991 + 5.73304i −0.342819 + 0.197926i −0.661518 0.749929i \(-0.730087\pi\)
0.318699 + 0.947856i \(0.396754\pi\)
\(840\) 0 0
\(841\) 0.239959 0.415621i 0.00827445 0.0143318i
\(842\) 0 0
\(843\) −17.5623 + 21.4926i −0.604876 + 0.740245i
\(844\) 0 0
\(845\) −34.3245 + 11.5058i −1.18080 + 0.395811i
\(846\) 0 0
\(847\) 12.0077i 0.412590i
\(848\) 0 0
\(849\) 2.35202 14.4367i 0.0807210 0.495466i
\(850\) 0 0
\(851\) −11.0943 6.40530i −0.380308 0.219571i
\(852\) 0 0
\(853\) 1.06793 0.616572i 0.0365654 0.0211110i −0.481606 0.876388i \(-0.659946\pi\)
0.518171 + 0.855277i \(0.326613\pi\)
\(854\) 0 0
\(855\) 14.0529 + 69.1130i 0.480600 + 2.36362i
\(856\) 0 0
\(857\) −9.29462 16.0987i −0.317498 0.549923i 0.662467 0.749091i \(-0.269509\pi\)
−0.979965 + 0.199168i \(0.936176\pi\)
\(858\) 0 0
\(859\) −6.59651 + 11.4255i −0.225070 + 0.389833i −0.956340 0.292255i \(-0.905594\pi\)
0.731270 + 0.682088i \(0.238928\pi\)
\(860\) 0 0
\(861\) 16.4105 6.21629i 0.559267 0.211850i
\(862\) 0 0
\(863\) 33.4436i 1.13843i 0.822188 + 0.569217i \(0.192753\pi\)
−0.822188 + 0.569217i \(0.807247\pi\)
\(864\) 0 0
\(865\) 31.4092i 1.06795i
\(866\) 0 0
\(867\) −27.5303 + 10.4285i −0.934977 + 0.354169i
\(868\) 0 0
\(869\) −6.30824 3.64206i −0.213992 0.123548i
\(870\) 0 0
\(871\) 33.2598 + 3.33985i 1.12697 + 0.113166i
\(872\) 0 0
\(873\) 0.0837323 0.250154i 0.00283391 0.00846642i
\(874\) 0 0
\(875\) 3.63918 + 6.30325i 0.123027 + 0.213089i
\(876\) 0 0
\(877\) 43.5316 + 25.1330i 1.46996 + 0.848681i 0.999432 0.0337054i \(-0.0107308\pi\)
0.470526 + 0.882386i \(0.344064\pi\)
\(878\) 0 0
\(879\) −11.6624 1.90004i −0.393364 0.0640867i
\(880\) 0 0
\(881\) −29.3997 −0.990501 −0.495251 0.868750i \(-0.664924\pi\)
−0.495251 + 0.868750i \(0.664924\pi\)
\(882\) 0 0
\(883\) −18.4705 −0.621582 −0.310791 0.950478i \(-0.600594\pi\)
−0.310791 + 0.950478i \(0.600594\pi\)
\(884\) 0 0
\(885\) −41.7479 34.1135i −1.40334 1.14671i
\(886\) 0 0
\(887\) 14.0631 24.3580i 0.472192 0.817860i −0.527302 0.849678i \(-0.676796\pi\)
0.999494 + 0.0318180i \(0.0101297\pi\)
\(888\) 0 0
\(889\) −4.90445 + 2.83158i −0.164490 + 0.0949683i
\(890\) 0 0
\(891\) 2.90855 + 6.85650i 0.0974401 + 0.229702i
\(892\) 0 0
\(893\) 36.8889 + 63.8934i 1.23444 + 2.13811i
\(894\) 0 0
\(895\) −46.3878 26.7820i −1.55057 0.895223i
\(896\) 0 0
\(897\) 3.82004 + 14.2442i 0.127547 + 0.475600i
\(898\) 0 0
\(899\) 2.16832i 0.0723176i
\(900\) 0 0
\(901\) −0.121154 −0.00403622
\(902\) 0 0
\(903\) 20.4525 + 3.33211i 0.680617 + 0.110886i
\(904\) 0 0
\(905\) 19.2962 + 11.1407i 0.641429 + 0.370329i
\(906\) 0 0
\(907\) 4.81770 + 8.34450i 0.159969 + 0.277075i 0.934857 0.355024i \(-0.115527\pi\)
−0.774888 + 0.632098i \(0.782194\pi\)
\(908\) 0 0
\(909\) −42.0982 14.0913i −1.39631 0.467378i
\(910\) 0 0
\(911\) −13.3962 23.2030i −0.443837 0.768749i 0.554133 0.832428i \(-0.313050\pi\)
−0.997970 + 0.0636793i \(0.979717\pi\)
\(912\) 0 0
\(913\) −4.35971 + 7.55123i −0.144285 + 0.249909i
\(914\) 0 0
\(915\) 0.769291 + 2.03086i 0.0254320 + 0.0671383i
\(916\) 0 0
\(917\) 22.0770i 0.729047i
\(918\) 0 0
\(919\) −18.0185 −0.594375 −0.297188 0.954819i \(-0.596049\pi\)
−0.297188 + 0.954819i \(0.596049\pi\)
\(920\) 0 0
\(921\) 4.61326 + 12.1786i 0.152012 + 0.401299i
\(922\) 0 0
\(923\) 9.11705 + 20.2242i 0.300091 + 0.665689i
\(924\) 0 0
\(925\) −12.9418 + 7.47194i −0.425523 + 0.245676i
\(926\) 0 0
\(927\) 4.40987 + 21.6880i 0.144839 + 0.712327i
\(928\) 0 0
\(929\) 21.6927 12.5243i 0.711716 0.410909i −0.0999803 0.994989i \(-0.531878\pi\)
0.811696 + 0.584080i \(0.198545\pi\)
\(930\) 0 0
\(931\) 41.2705 + 23.8275i 1.35259 + 0.780916i
\(932\) 0 0
\(933\) −0.206818 + 1.26945i −0.00677092 + 0.0415599i
\(934\) 0 0
\(935\) 0.131361 0.00429597
\(936\) 0 0
\(937\) 31.9869 1.04497 0.522483 0.852650i \(-0.325006\pi\)
0.522483 + 0.852650i \(0.325006\pi\)
\(938\) 0 0
\(939\) −1.37259 1.12158i −0.0447927 0.0366015i
\(940\) 0 0
\(941\) 28.3105 + 16.3451i 0.922897 + 0.532835i 0.884558 0.466430i \(-0.154460\pi\)
0.0383385 + 0.999265i \(0.487793\pi\)
\(942\) 0 0
\(943\) −17.7996 + 10.2766i −0.579635 + 0.334652i
\(944\) 0 0
\(945\) −7.84546 + 14.9055i −0.255213 + 0.484876i
\(946\) 0 0
\(947\) −5.96037 + 3.44122i −0.193686 + 0.111825i −0.593707 0.804681i \(-0.702336\pi\)
0.400021 + 0.916506i \(0.369003\pi\)
\(948\) 0 0
\(949\) −12.5282 27.7911i −0.406682 0.902138i
\(950\) 0 0
\(951\) 3.09113 3.78291i 0.100237 0.122669i
\(952\) 0 0
\(953\) −9.64310 −0.312371 −0.156185 0.987728i \(-0.549920\pi\)
−0.156185 + 0.987728i \(0.549920\pi\)
\(954\) 0 0
\(955\) 70.9177i 2.29484i
\(956\) 0 0
\(957\) 7.55508 + 1.23087i 0.244221 + 0.0397884i
\(958\) 0 0
\(959\) −7.58008 + 13.1291i −0.244773 + 0.423960i
\(960\) 0 0
\(961\) −15.4176 26.7040i −0.497341 0.861420i
\(962\) 0 0
\(963\) 4.58803 4.05820i 0.147847 0.130774i
\(964\) 0 0
\(965\) 23.4108 + 40.5486i 0.753619 + 1.30531i
\(966\) 0 0
\(967\) 16.7187 + 9.65256i 0.537638 + 0.310405i 0.744121 0.668045i \(-0.232869\pi\)
−0.206483 + 0.978450i \(0.566202\pi\)
\(968\) 0 0
\(969\) −0.295256 0.779450i −0.00948498 0.0250395i
\(970\) 0 0
\(971\) −19.4628 −0.624592 −0.312296 0.949985i \(-0.601098\pi\)
−0.312296 + 0.949985i \(0.601098\pi\)
\(972\) 0 0
\(973\) 7.38183i 0.236651i
\(974\) 0 0
\(975\) 16.6181 + 4.44894i 0.532206 + 0.142480i
\(976\) 0 0
\(977\) −41.4347 23.9223i −1.32561 0.765343i −0.340996 0.940065i \(-0.610764\pi\)
−0.984618 + 0.174722i \(0.944097\pi\)
\(978\) 0 0
\(979\) 2.17106 + 3.76038i 0.0693873 + 0.120182i
\(980\) 0 0
\(981\) 21.8204 + 24.6692i 0.696672 + 0.787627i
\(982\) 0 0
\(983\) 54.1819 31.2819i 1.72813 0.997739i 0.830460 0.557079i \(-0.188078\pi\)
0.897674 0.440660i \(-0.145256\pi\)
\(984\) 0 0
\(985\) −35.3134 + 61.1646i −1.12518 + 1.94887i
\(986\) 0 0
\(987\) −2.83336 + 17.3912i −0.0901869 + 0.553567i
\(988\) 0 0
\(989\) −24.2705 −0.771756
\(990\) 0 0
\(991\) −20.8223 −0.661441 −0.330720 0.943729i \(-0.607292\pi\)
−0.330720 + 0.943729i \(0.607292\pi\)
\(992\) 0 0
\(993\) −28.7050 + 35.1290i −0.910925 + 1.11479i
\(994\) 0 0
\(995\) −22.4018 12.9337i −0.710186 0.410026i
\(996\) 0 0
\(997\) 4.26438 + 7.38612i 0.135054 + 0.233921i 0.925618 0.378459i \(-0.123546\pi\)
−0.790564 + 0.612379i \(0.790212\pi\)
\(998\) 0 0
\(999\) 24.9438 + 13.1291i 0.789186 + 0.415385i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.bl.b.337.11 yes 24
3.2 odd 2 1404.2.bl.b.1117.11 24
9.2 odd 6 1404.2.bl.b.181.2 24
9.4 even 3 4212.2.b.g.649.11 12
9.5 odd 6 4212.2.b.h.649.2 12
9.7 even 3 inner 468.2.bl.b.25.12 yes 24
13.12 even 2 inner 468.2.bl.b.337.12 yes 24
39.38 odd 2 1404.2.bl.b.1117.2 24
117.25 even 6 inner 468.2.bl.b.25.11 24
117.38 odd 6 1404.2.bl.b.181.11 24
117.77 odd 6 4212.2.b.h.649.11 12
117.103 even 6 4212.2.b.g.649.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.bl.b.25.11 24 117.25 even 6 inner
468.2.bl.b.25.12 yes 24 9.7 even 3 inner
468.2.bl.b.337.11 yes 24 1.1 even 1 trivial
468.2.bl.b.337.12 yes 24 13.12 even 2 inner
1404.2.bl.b.181.2 24 9.2 odd 6
1404.2.bl.b.181.11 24 117.38 odd 6
1404.2.bl.b.1117.2 24 39.38 odd 2
1404.2.bl.b.1117.11 24 3.2 odd 2
4212.2.b.g.649.2 12 117.103 even 6
4212.2.b.g.649.11 12 9.4 even 3
4212.2.b.h.649.2 12 9.5 odd 6
4212.2.b.h.649.11 12 117.77 odd 6