L(s) = 1 | + (0.150 − 0.150i)2-s + (−1.62 − 0.591i)3-s + 1.95i·4-s + (−0.684 + 2.12i)5-s + (−0.333 + 0.155i)6-s + (−0.387 − 0.387i)7-s + (0.594 + 0.594i)8-s + (2.30 + 1.92i)9-s + (0.217 + 0.422i)10-s − 5.94i·11-s + (1.15 − 3.18i)12-s + (−2.75 + 2.75i)13-s − 0.116·14-s + (2.37 − 3.06i)15-s − 3.73·16-s + (−4.13 + 4.13i)17-s + ⋯ |
L(s) = 1 | + (0.106 − 0.106i)2-s + (−0.939 − 0.341i)3-s + 0.977i·4-s + (−0.306 + 0.952i)5-s + (−0.136 + 0.0636i)6-s + (−0.146 − 0.146i)7-s + (0.210 + 0.210i)8-s + (0.766 + 0.642i)9-s + (0.0686 + 0.133i)10-s − 1.79i·11-s + (0.333 − 0.918i)12-s + (−0.762 + 0.762i)13-s − 0.0311·14-s + (0.612 − 0.790i)15-s − 0.932·16-s + (−1.00 + 1.00i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.994 - 0.105i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.994 - 0.105i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0160457 + 0.302506i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0160457 + 0.302506i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.62 + 0.591i)T \) |
| 5 | \( 1 + (0.684 - 2.12i)T \) |
| 31 | \( 1 + T \) |
good | 2 | \( 1 + (-0.150 + 0.150i)T - 2iT^{2} \) |
| 7 | \( 1 + (0.387 + 0.387i)T + 7iT^{2} \) |
| 11 | \( 1 + 5.94iT - 11T^{2} \) |
| 13 | \( 1 + (2.75 - 2.75i)T - 13iT^{2} \) |
| 17 | \( 1 + (4.13 - 4.13i)T - 17iT^{2} \) |
| 19 | \( 1 - 1.21iT - 19T^{2} \) |
| 23 | \( 1 + (6.27 + 6.27i)T + 23iT^{2} \) |
| 29 | \( 1 - 2.83T + 29T^{2} \) |
| 37 | \( 1 + (-3.46 - 3.46i)T + 37iT^{2} \) |
| 41 | \( 1 - 6.88iT - 41T^{2} \) |
| 43 | \( 1 + (4.32 - 4.32i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.93 - 3.93i)T - 47iT^{2} \) |
| 53 | \( 1 + (4.51 + 4.51i)T + 53iT^{2} \) |
| 59 | \( 1 + 4.65T + 59T^{2} \) |
| 61 | \( 1 - 0.744T + 61T^{2} \) |
| 67 | \( 1 + (-5.51 - 5.51i)T + 67iT^{2} \) |
| 71 | \( 1 - 4.91iT - 71T^{2} \) |
| 73 | \( 1 + (-9.51 + 9.51i)T - 73iT^{2} \) |
| 79 | \( 1 - 3.31iT - 79T^{2} \) |
| 83 | \( 1 + (-4.12 - 4.12i)T + 83iT^{2} \) |
| 89 | \( 1 + 3.87T + 89T^{2} \) |
| 97 | \( 1 + (-5.32 - 5.32i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41678348735290499801664861951, −10.95075272201497285882699769634, −9.980228276845605720241240860009, −8.418626287031545980454344277684, −7.86506949268247160540521609262, −6.49446021518561686896485752967, −6.38620907641343998685075520283, −4.60447764825668824052905846542, −3.64311890983519045444412106469, −2.35218368520588568320480581373,
0.19191497374825617107588616976, 1.89607583930385578447662192031, 4.25957093982963373781013851122, 4.93111180706127575405374751453, 5.57739300770713288675891005898, 6.80515406982204540462488034800, 7.61542283600486064819207160834, 9.345398488252999170143078060035, 9.632758726247652254798080900850, 10.51283952073496917512507284085