sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(465, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,1,0]))
pari:[g,chi] = znchar(Mod(32,465))
\(\chi_{465}(32,\cdot)\)
\(\chi_{465}(218,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((311,187,406)\) → \((-1,i,1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 465 }(32, a) \) |
\(1\) | \(1\) | \(-i\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(-i\) | \(1\) | \(1\) | \(-i\) | \(-1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)