L(s) = 1 | + (0.450 − 0.450i)2-s + (−1.31 + 1.12i)3-s + 1.59i·4-s + (1.42 + 1.72i)5-s + (−0.0827 + 1.09i)6-s + (0.166 + 0.166i)7-s + (1.61 + 1.61i)8-s + (0.449 − 2.96i)9-s + (1.41 + 0.132i)10-s + 1.30i·11-s + (−1.80 − 2.09i)12-s + (−2.01 + 2.01i)13-s + 0.149·14-s + (−3.81 − 0.647i)15-s − 1.73·16-s + (−0.865 + 0.865i)17-s + ⋯ |
L(s) = 1 | + (0.318 − 0.318i)2-s + (−0.758 + 0.652i)3-s + 0.797i·4-s + (0.638 + 0.769i)5-s + (−0.0337 + 0.448i)6-s + (0.0629 + 0.0629i)7-s + (0.572 + 0.572i)8-s + (0.149 − 0.988i)9-s + (0.448 + 0.0417i)10-s + 0.394i·11-s + (−0.519 − 0.604i)12-s + (−0.559 + 0.559i)13-s + 0.0400·14-s + (−0.985 − 0.167i)15-s − 0.433·16-s + (−0.209 + 0.209i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.376 - 0.926i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.376 - 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.733085 + 1.08868i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.733085 + 1.08868i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.31 - 1.12i)T \) |
| 5 | \( 1 + (-1.42 - 1.72i)T \) |
| 31 | \( 1 - T \) |
good | 2 | \( 1 + (-0.450 + 0.450i)T - 2iT^{2} \) |
| 7 | \( 1 + (-0.166 - 0.166i)T + 7iT^{2} \) |
| 11 | \( 1 - 1.30iT - 11T^{2} \) |
| 13 | \( 1 + (2.01 - 2.01i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.865 - 0.865i)T - 17iT^{2} \) |
| 19 | \( 1 + 6.62iT - 19T^{2} \) |
| 23 | \( 1 + (-3.49 - 3.49i)T + 23iT^{2} \) |
| 29 | \( 1 + 8.04T + 29T^{2} \) |
| 37 | \( 1 + (-1.16 - 1.16i)T + 37iT^{2} \) |
| 41 | \( 1 - 7.29iT - 41T^{2} \) |
| 43 | \( 1 + (-1.00 + 1.00i)T - 43iT^{2} \) |
| 47 | \( 1 + (-5.02 + 5.02i)T - 47iT^{2} \) |
| 53 | \( 1 + (-5.89 - 5.89i)T + 53iT^{2} \) |
| 59 | \( 1 - 13.9T + 59T^{2} \) |
| 61 | \( 1 - 3.40T + 61T^{2} \) |
| 67 | \( 1 + (6.19 + 6.19i)T + 67iT^{2} \) |
| 71 | \( 1 + 7.53iT - 71T^{2} \) |
| 73 | \( 1 + (5.11 - 5.11i)T - 73iT^{2} \) |
| 79 | \( 1 + 10.5iT - 79T^{2} \) |
| 83 | \( 1 + (-11.2 - 11.2i)T + 83iT^{2} \) |
| 89 | \( 1 - 3.38T + 89T^{2} \) |
| 97 | \( 1 + (-4.83 - 4.83i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35537179340514094142327126456, −10.66721549850877642141441593403, −9.615885278193293929001258815124, −8.948919427115179737842827765455, −7.33259966783321149973627068828, −6.76713941478327432946851574908, −5.45050568820944595457686595137, −4.56034634042917593804725971663, −3.45151170912813278992034044771, −2.25953869116397214201119041860,
0.815674252515875664473839047900, 2.08538339876606883647659324906, 4.33518051754718885188795608285, 5.48821619432690334879633802251, 5.72455601540118434170948981959, 6.84045528693669715804033832990, 7.82040503732320432161269763509, 9.002670860866992399771346537192, 10.07802786714549154016410602441, 10.66308340374997849052441439191