L(s) = 1 | + 2-s − 3-s + 4-s − 4·5-s − 6-s + 7-s + 8-s + 9-s − 4·10-s − 11-s − 12-s − 6·13-s + 14-s + 4·15-s + 16-s − 4·17-s + 18-s − 2·19-s − 4·20-s − 21-s − 22-s − 8·23-s − 24-s + 11·25-s − 6·26-s − 27-s + 28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 1.78·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 1.26·10-s − 0.301·11-s − 0.288·12-s − 1.66·13-s + 0.267·14-s + 1.03·15-s + 1/4·16-s − 0.970·17-s + 0.235·18-s − 0.458·19-s − 0.894·20-s − 0.218·21-s − 0.213·22-s − 1.66·23-s − 0.204·24-s + 11/5·25-s − 1.17·26-s − 0.192·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(462s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(462s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 7 | 1−T |
| 11 | 1+T |
good | 5 | 1+4T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1+8T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1−6T+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1−12T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+12T+pT2 |
| 73 | 1+pT2 |
| 79 | 1+16T+pT2 |
| 83 | 1+14T+pT2 |
| 89 | 1+14T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99555820546878314855420687836, −10.01228279213210772511711884000, −8.515253748126092137293786902708, −7.56853928475057757956492711754, −7.06196128452260537589494409619, −5.68884256231510340821014445655, −4.50182617970418156245344086250, −4.10732223636165202223499092609, −2.48203239562124190952326585155, 0,
2.48203239562124190952326585155, 4.10732223636165202223499092609, 4.50182617970418156245344086250, 5.68884256231510340821014445655, 7.06196128452260537589494409619, 7.56853928475057757956492711754, 8.515253748126092137293786902708, 10.01228279213210772511711884000, 10.99555820546878314855420687836