Properties

Label 2-459-1.1-c1-0-5
Degree $2$
Conductor $459$
Sign $1$
Analytic cond. $3.66513$
Root an. cond. $1.91445$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 2·5-s + 4·7-s − 4·10-s − 3·11-s + 7·13-s − 8·14-s − 4·16-s − 17-s − 4·19-s + 4·20-s + 6·22-s − 23-s − 25-s − 14·26-s + 8·28-s + 9·29-s − 2·31-s + 8·32-s + 2·34-s + 8·35-s − 8·37-s + 8·38-s + 9·41-s + 7·43-s − 6·44-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.894·5-s + 1.51·7-s − 1.26·10-s − 0.904·11-s + 1.94·13-s − 2.13·14-s − 16-s − 0.242·17-s − 0.917·19-s + 0.894·20-s + 1.27·22-s − 0.208·23-s − 1/5·25-s − 2.74·26-s + 1.51·28-s + 1.67·29-s − 0.359·31-s + 1.41·32-s + 0.342·34-s + 1.35·35-s − 1.31·37-s + 1.29·38-s + 1.40·41-s + 1.06·43-s − 0.904·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(459\)    =    \(3^{3} \cdot 17\)
Sign: $1$
Analytic conductor: \(3.66513\)
Root analytic conductor: \(1.91445\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 459,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9552159907\)
\(L(\frac12)\) \(\approx\) \(0.9552159907\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
17 \( 1 + T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.80010067496362414705646758430, −10.26491053566870849867075963176, −9.074783363565654434917333220654, −8.400667580128532101109124055567, −7.897941236349574718941751767418, −6.58720795425678370738564517992, −5.54281389578195108069602057654, −4.33407792608305306521972331424, −2.25417992666271586330169990313, −1.28016298028817331562348462813, 1.28016298028817331562348462813, 2.25417992666271586330169990313, 4.33407792608305306521972331424, 5.54281389578195108069602057654, 6.58720795425678370738564517992, 7.897941236349574718941751767418, 8.400667580128532101109124055567, 9.074783363565654434917333220654, 10.26491053566870849867075963176, 10.80010067496362414705646758430

Graph of the $Z$-function along the critical line