| L(s) = 1 | + (−1.16 − 0.312i)3-s + (0.980 − 0.262i)5-s + (−2.60 − 0.476i)7-s + (−1.33 − 0.772i)9-s + (−0.635 + 2.36i)11-s + (−2.65 + 2.65i)13-s − 1.22·15-s + (−0.509 − 0.881i)17-s + (0.0250 + 0.0936i)19-s + (2.88 + 1.36i)21-s + (−1.67 − 0.965i)23-s + (−3.43 + 1.98i)25-s + (3.87 + 3.87i)27-s + (−5.05 + 5.05i)29-s + (−4.28 − 7.41i)31-s + ⋯ |
| L(s) = 1 | + (−0.672 − 0.180i)3-s + (0.438 − 0.117i)5-s + (−0.983 − 0.180i)7-s + (−0.445 − 0.257i)9-s + (−0.191 + 0.714i)11-s + (−0.737 + 0.737i)13-s − 0.316·15-s + (−0.123 − 0.213i)17-s + (0.00575 + 0.0214i)19-s + (0.629 + 0.298i)21-s + (−0.348 − 0.201i)23-s + (−0.687 + 0.396i)25-s + (0.746 + 0.746i)27-s + (−0.938 + 0.938i)29-s + (−0.769 − 1.33i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.940 - 0.339i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.940 - 0.339i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0141992 + 0.0812417i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0141992 + 0.0812417i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (2.60 + 0.476i)T \) |
| good | 3 | \( 1 + (1.16 + 0.312i)T + (2.59 + 1.5i)T^{2} \) |
| 5 | \( 1 + (-0.980 + 0.262i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (0.635 - 2.36i)T + (-9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (2.65 - 2.65i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.509 + 0.881i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.0250 - 0.0936i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (1.67 + 0.965i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (5.05 - 5.05i)T - 29iT^{2} \) |
| 31 | \( 1 + (4.28 + 7.41i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (7.71 - 2.06i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 8.51iT - 41T^{2} \) |
| 43 | \( 1 + (-4.47 - 4.47i)T + 43iT^{2} \) |
| 47 | \( 1 + (6.02 - 10.4i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.381 + 1.42i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.86 + 6.96i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (1.18 + 4.42i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-3.38 - 0.907i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 5.43iT - 71T^{2} \) |
| 73 | \( 1 + (-7.34 + 4.23i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.433 + 0.751i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.44 + 5.44i)T - 83iT^{2} \) |
| 89 | \( 1 + (-3.93 - 2.26i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 16.4T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.54676137423553737594921460702, −10.62607011346766831940183845000, −9.557568732702986677245027007606, −9.190397016047871728610991599687, −7.58937541488533849004119946907, −6.75418972615967909810964672480, −5.92243039009959224581035123405, −4.96619311908497177552771317050, −3.59005599376938054809235686475, −2.08568581229647614551470659521,
0.05103853881081624948931973705, 2.44816685699041914315040147179, 3.63350931199238826498188034126, 5.28271362409687788607320008363, 5.79662268114856462117608433818, 6.75341005779759768340692869967, 7.974378673799626301579200097109, 9.001746849548512973279248568267, 10.03917513619991080833346862208, 10.55310357113560121191545119516