| L(s) = 1 | + (−1.16 + 0.312i)3-s + (0.980 + 0.262i)5-s + (−2.60 + 0.476i)7-s + (−1.33 + 0.772i)9-s + (−0.635 − 2.36i)11-s + (−2.65 − 2.65i)13-s − 1.22·15-s + (−0.509 + 0.881i)17-s + (0.0250 − 0.0936i)19-s + (2.88 − 1.36i)21-s + (−1.67 + 0.965i)23-s + (−3.43 − 1.98i)25-s + (3.87 − 3.87i)27-s + (−5.05 − 5.05i)29-s + (−4.28 + 7.41i)31-s + ⋯ |
| L(s) = 1 | + (−0.672 + 0.180i)3-s + (0.438 + 0.117i)5-s + (−0.983 + 0.180i)7-s + (−0.445 + 0.257i)9-s + (−0.191 − 0.714i)11-s + (−0.737 − 0.737i)13-s − 0.316·15-s + (−0.123 + 0.213i)17-s + (0.00575 − 0.0214i)19-s + (0.629 − 0.298i)21-s + (−0.348 + 0.201i)23-s + (−0.687 − 0.396i)25-s + (0.746 − 0.746i)27-s + (−0.938 − 0.938i)29-s + (−0.769 + 1.33i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.940 + 0.339i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.940 + 0.339i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0141992 - 0.0812417i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0141992 - 0.0812417i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (2.60 - 0.476i)T \) |
| good | 3 | \( 1 + (1.16 - 0.312i)T + (2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (-0.980 - 0.262i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (0.635 + 2.36i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (2.65 + 2.65i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.509 - 0.881i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.0250 + 0.0936i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (1.67 - 0.965i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.05 + 5.05i)T + 29iT^{2} \) |
| 31 | \( 1 + (4.28 - 7.41i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (7.71 + 2.06i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 8.51iT - 41T^{2} \) |
| 43 | \( 1 + (-4.47 + 4.47i)T - 43iT^{2} \) |
| 47 | \( 1 + (6.02 + 10.4i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.381 - 1.42i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.86 - 6.96i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (1.18 - 4.42i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-3.38 + 0.907i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 5.43iT - 71T^{2} \) |
| 73 | \( 1 + (-7.34 - 4.23i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.433 - 0.751i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.44 - 5.44i)T + 83iT^{2} \) |
| 89 | \( 1 + (-3.93 + 2.26i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 16.4T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55310357113560121191545119516, −10.03917513619991080833346862208, −9.001746849548512973279248568267, −7.974378673799626301579200097109, −6.75341005779759768340692869967, −5.79662268114856462117608433818, −5.28271362409687788607320008363, −3.63350931199238826498188034126, −2.44816685699041914315040147179, −0.05103853881081624948931973705,
2.08568581229647614551470659521, 3.59005599376938054809235686475, 4.96619311908497177552771317050, 5.92243039009959224581035123405, 6.75418972615967909810964672480, 7.58937541488533849004119946907, 9.190397016047871728610991599687, 9.557568732702986677245027007606, 10.62607011346766831940183845000, 11.54676137423553737594921460702