L(s) = 1 | + (2.42 − 2.42i)3-s + (4.90 + 4.90i)5-s + (−5.19 + 4.68i)7-s − 2.74i·9-s + (11.4 − 11.4i)11-s + (−0.233 + 0.233i)13-s + 23.7·15-s + 13.2i·17-s + (16.1 − 16.1i)19-s + (−1.23 + 23.9i)21-s + 37.7i·23-s + 23.1i·25-s + (15.1 + 15.1i)27-s + (23.3 + 23.3i)29-s − 38.2i·31-s + ⋯ |
L(s) = 1 | + (0.807 − 0.807i)3-s + (0.981 + 0.981i)5-s + (−0.742 + 0.669i)7-s − 0.304i·9-s + (1.03 − 1.03i)11-s + (−0.0179 + 0.0179i)13-s + 1.58·15-s + 0.780i·17-s + (0.851 − 0.851i)19-s + (−0.0588 + 1.14i)21-s + 1.64i·23-s + 0.927i·25-s + (0.561 + 0.561i)27-s + (0.805 + 0.805i)29-s − 1.23i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.144i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.989 - 0.144i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.647818511\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.647818511\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (5.19 - 4.68i)T \) |
good | 3 | \( 1 + (-2.42 + 2.42i)T - 9iT^{2} \) |
| 5 | \( 1 + (-4.90 - 4.90i)T + 25iT^{2} \) |
| 11 | \( 1 + (-11.4 + 11.4i)T - 121iT^{2} \) |
| 13 | \( 1 + (0.233 - 0.233i)T - 169iT^{2} \) |
| 17 | \( 1 - 13.2iT - 289T^{2} \) |
| 19 | \( 1 + (-16.1 + 16.1i)T - 361iT^{2} \) |
| 23 | \( 1 - 37.7iT - 529T^{2} \) |
| 29 | \( 1 + (-23.3 - 23.3i)T + 841iT^{2} \) |
| 31 | \( 1 + 38.2iT - 961T^{2} \) |
| 37 | \( 1 + (-5.37 + 5.37i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 - 13.3T + 1.68e3T^{2} \) |
| 43 | \( 1 + (27.7 - 27.7i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + 33.0iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (9.52 - 9.52i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (46.0 + 46.0i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + (-58.0 + 58.0i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 + (30.9 + 30.9i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 4.71iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 74.6T + 5.32e3T^{2} \) |
| 79 | \( 1 + 32.5T + 6.24e3T^{2} \) |
| 83 | \( 1 + (66.2 - 66.2i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 15.6T + 7.92e3T^{2} \) |
| 97 | \( 1 + 4.30iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95267928406287121360930600726, −9.740895961416775955814493626754, −9.176203215145848051542315382839, −8.214437777882638712154464311779, −7.05283833824565777595348893237, −6.37207719690137964506530214916, −5.56801631964153178040996909051, −3.43738695909154360779930752447, −2.73831572587192723656580532024, −1.54876339409219883849318615543,
1.19303585198563376844815501320, 2.79449621714738997952495947258, 4.07916707022286909179978907192, 4.79348771408174608542524208502, 6.16628409613561829513530099446, 7.12805016584784848329653419496, 8.537164080515570841150431479257, 9.227518645074617609336040602680, 9.880491001803668680599102062971, 10.26878672638783615196275707957