Properties

Label 448.3.l.b.209.23
Level $448$
Weight $3$
Character 448.209
Analytic conductor $12.207$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(209,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.209"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 209.23
Character \(\chi\) \(=\) 448.209
Dual form 448.3.l.b.433.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.42317 - 2.42317i) q^{3} +(4.90814 + 4.90814i) q^{5} +(-5.19813 + 4.68822i) q^{7} -2.74353i q^{9} +(11.4374 - 11.4374i) q^{11} +(-0.233094 + 0.233094i) q^{13} +23.7865 q^{15} +13.2735i q^{17} +(16.1828 - 16.1828i) q^{19} +(-1.23559 + 23.9563i) q^{21} +37.7293i q^{23} +23.1796i q^{25} +(15.1605 + 15.1605i) q^{27} +(23.3499 + 23.3499i) q^{29} -38.2862i q^{31} -55.4298i q^{33} +(-48.5236 - 2.50269i) q^{35} +(5.37755 - 5.37755i) q^{37} +1.12965i q^{39} +13.3775 q^{41} +(-27.7609 + 27.7609i) q^{43} +(13.4656 - 13.4656i) q^{45} -33.0328i q^{47} +(5.04112 - 48.7400i) q^{49} +(32.1640 + 32.1640i) q^{51} +(-9.52094 + 9.52094i) q^{53} +112.273 q^{55} -78.4274i q^{57} +(-46.0839 - 46.0839i) q^{59} +(58.0502 - 58.0502i) q^{61} +(12.8623 + 14.2612i) q^{63} -2.28811 q^{65} +(-30.9706 - 30.9706i) q^{67} +(91.4246 + 91.4246i) q^{69} +4.71778i q^{71} -74.6723 q^{73} +(56.1683 + 56.1683i) q^{75} +(-5.83203 + 113.075i) q^{77} -32.5841 q^{79} +98.1648 q^{81} +(-66.2230 + 66.2230i) q^{83} +(-65.1481 + 65.1481i) q^{85} +113.162 q^{87} +15.6044 q^{89} +(0.118856 - 2.30445i) q^{91} +(-92.7740 - 92.7740i) q^{93} +158.855 q^{95} -4.30378i q^{97} +(-31.3790 - 31.3790i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{15} - 20 q^{21} - 96 q^{29} + 100 q^{35} - 128 q^{37} + 72 q^{43} + 192 q^{49} + 128 q^{51} + 88 q^{53} - 444 q^{63} - 8 q^{65} - 440 q^{67} + 12 q^{77} + 8 q^{79} + 64 q^{81} + 96 q^{85} + 388 q^{91}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.42317 2.42317i 0.807724 0.807724i −0.176565 0.984289i \(-0.556498\pi\)
0.984289 + 0.176565i \(0.0564985\pi\)
\(4\) 0 0
\(5\) 4.90814 + 4.90814i 0.981628 + 0.981628i 0.999834 0.0182065i \(-0.00579564\pi\)
−0.0182065 + 0.999834i \(0.505796\pi\)
\(6\) 0 0
\(7\) −5.19813 + 4.68822i −0.742590 + 0.669746i
\(8\) 0 0
\(9\) 2.74353i 0.304837i
\(10\) 0 0
\(11\) 11.4374 11.4374i 1.03977 1.03977i 0.0405918 0.999176i \(-0.487076\pi\)
0.999176 0.0405918i \(-0.0129243\pi\)
\(12\) 0 0
\(13\) −0.233094 + 0.233094i −0.0179303 + 0.0179303i −0.716015 0.698085i \(-0.754036\pi\)
0.698085 + 0.716015i \(0.254036\pi\)
\(14\) 0 0
\(15\) 23.7865 1.58577
\(16\) 0 0
\(17\) 13.2735i 0.780794i 0.920647 + 0.390397i \(0.127662\pi\)
−0.920647 + 0.390397i \(0.872338\pi\)
\(18\) 0 0
\(19\) 16.1828 16.1828i 0.851726 0.851726i −0.138620 0.990346i \(-0.544267\pi\)
0.990346 + 0.138620i \(0.0442666\pi\)
\(20\) 0 0
\(21\) −1.23559 + 23.9563i −0.0588377 + 1.14078i
\(22\) 0 0
\(23\) 37.7293i 1.64040i 0.572074 + 0.820202i \(0.306139\pi\)
−0.572074 + 0.820202i \(0.693861\pi\)
\(24\) 0 0
\(25\) 23.1796i 0.927186i
\(26\) 0 0
\(27\) 15.1605 + 15.1605i 0.561500 + 0.561500i
\(28\) 0 0
\(29\) 23.3499 + 23.3499i 0.805169 + 0.805169i 0.983898 0.178729i \(-0.0571987\pi\)
−0.178729 + 0.983898i \(0.557199\pi\)
\(30\) 0 0
\(31\) 38.2862i 1.23504i −0.786556 0.617519i \(-0.788138\pi\)
0.786556 0.617519i \(-0.211862\pi\)
\(32\) 0 0
\(33\) 55.4298i 1.67969i
\(34\) 0 0
\(35\) −48.5236 2.50269i −1.38639 0.0715055i
\(36\) 0 0
\(37\) 5.37755 5.37755i 0.145339 0.145339i −0.630693 0.776032i \(-0.717229\pi\)
0.776032 + 0.630693i \(0.217229\pi\)
\(38\) 0 0
\(39\) 1.12965i 0.0289655i
\(40\) 0 0
\(41\) 13.3775 0.326280 0.163140 0.986603i \(-0.447838\pi\)
0.163140 + 0.986603i \(0.447838\pi\)
\(42\) 0 0
\(43\) −27.7609 + 27.7609i −0.645603 + 0.645603i −0.951927 0.306324i \(-0.900901\pi\)
0.306324 + 0.951927i \(0.400901\pi\)
\(44\) 0 0
\(45\) 13.4656 13.4656i 0.299236 0.299236i
\(46\) 0 0
\(47\) 33.0328i 0.702826i −0.936221 0.351413i \(-0.885701\pi\)
0.936221 0.351413i \(-0.114299\pi\)
\(48\) 0 0
\(49\) 5.04112 48.7400i 0.102880 0.994694i
\(50\) 0 0
\(51\) 32.1640 + 32.1640i 0.630666 + 0.630666i
\(52\) 0 0
\(53\) −9.52094 + 9.52094i −0.179640 + 0.179640i −0.791199 0.611559i \(-0.790543\pi\)
0.611559 + 0.791199i \(0.290543\pi\)
\(54\) 0 0
\(55\) 112.273 2.04133
\(56\) 0 0
\(57\) 78.4274i 1.37592i
\(58\) 0 0
\(59\) −46.0839 46.0839i −0.781083 0.781083i 0.198930 0.980014i \(-0.436253\pi\)
−0.980014 + 0.198930i \(0.936253\pi\)
\(60\) 0 0
\(61\) 58.0502 58.0502i 0.951643 0.951643i −0.0472410 0.998884i \(-0.515043\pi\)
0.998884 + 0.0472410i \(0.0150429\pi\)
\(62\) 0 0
\(63\) 12.8623 + 14.2612i 0.204163 + 0.226369i
\(64\) 0 0
\(65\) −2.28811 −0.0352018
\(66\) 0 0
\(67\) −30.9706 30.9706i −0.462248 0.462248i 0.437143 0.899392i \(-0.355990\pi\)
−0.899392 + 0.437143i \(0.855990\pi\)
\(68\) 0 0
\(69\) 91.4246 + 91.4246i 1.32499 + 1.32499i
\(70\) 0 0
\(71\) 4.71778i 0.0664475i 0.999448 + 0.0332238i \(0.0105774\pi\)
−0.999448 + 0.0332238i \(0.989423\pi\)
\(72\) 0 0
\(73\) −74.6723 −1.02291 −0.511454 0.859311i \(-0.670893\pi\)
−0.511454 + 0.859311i \(0.670893\pi\)
\(74\) 0 0
\(75\) 56.1683 + 56.1683i 0.748911 + 0.748911i
\(76\) 0 0
\(77\) −5.83203 + 113.075i −0.0757406 + 1.46850i
\(78\) 0 0
\(79\) −32.5841 −0.412457 −0.206229 0.978504i \(-0.566119\pi\)
−0.206229 + 0.978504i \(0.566119\pi\)
\(80\) 0 0
\(81\) 98.1648 1.21191
\(82\) 0 0
\(83\) −66.2230 + 66.2230i −0.797867 + 0.797867i −0.982759 0.184892i \(-0.940807\pi\)
0.184892 + 0.982759i \(0.440807\pi\)
\(84\) 0 0
\(85\) −65.1481 + 65.1481i −0.766449 + 0.766449i
\(86\) 0 0
\(87\) 113.162 1.30071
\(88\) 0 0
\(89\) 15.6044 0.175330 0.0876652 0.996150i \(-0.472059\pi\)
0.0876652 + 0.996150i \(0.472059\pi\)
\(90\) 0 0
\(91\) 0.118856 2.30445i 0.00130611 0.0253236i
\(92\) 0 0
\(93\) −92.7740 92.7740i −0.997570 0.997570i
\(94\) 0 0
\(95\) 158.855 1.67216
\(96\) 0 0
\(97\) 4.30378i 0.0443689i −0.999754 0.0221844i \(-0.992938\pi\)
0.999754 0.0221844i \(-0.00706210\pi\)
\(98\) 0 0
\(99\) −31.3790 31.3790i −0.316960 0.316960i
\(100\) 0 0
\(101\) −103.129 103.129i −1.02108 1.02108i −0.999773 0.0213065i \(-0.993217\pi\)
−0.0213065 0.999773i \(-0.506783\pi\)
\(102\) 0 0
\(103\) −152.891 −1.48438 −0.742189 0.670190i \(-0.766212\pi\)
−0.742189 + 0.670190i \(0.766212\pi\)
\(104\) 0 0
\(105\) −123.646 + 111.517i −1.17758 + 1.06206i
\(106\) 0 0
\(107\) −72.2804 + 72.2804i −0.675518 + 0.675518i −0.958983 0.283465i \(-0.908516\pi\)
0.283465 + 0.958983i \(0.408516\pi\)
\(108\) 0 0
\(109\) 5.71433 + 5.71433i 0.0524250 + 0.0524250i 0.732833 0.680408i \(-0.238198\pi\)
−0.680408 + 0.732833i \(0.738198\pi\)
\(110\) 0 0
\(111\) 26.0615i 0.234788i
\(112\) 0 0
\(113\) 150.105 1.32837 0.664184 0.747570i \(-0.268779\pi\)
0.664184 + 0.747570i \(0.268779\pi\)
\(114\) 0 0
\(115\) −185.181 + 185.181i −1.61027 + 1.61027i
\(116\) 0 0
\(117\) 0.639501 + 0.639501i 0.00546582 + 0.00546582i
\(118\) 0 0
\(119\) −62.2291 68.9973i −0.522934 0.579810i
\(120\) 0 0
\(121\) 140.630i 1.16223i
\(122\) 0 0
\(123\) 32.4160 32.4160i 0.263544 0.263544i
\(124\) 0 0
\(125\) 8.93454 8.93454i 0.0714764 0.0714764i
\(126\) 0 0
\(127\) −103.137 −0.812103 −0.406051 0.913850i \(-0.633095\pi\)
−0.406051 + 0.913850i \(0.633095\pi\)
\(128\) 0 0
\(129\) 134.539i 1.04294i
\(130\) 0 0
\(131\) 101.501 101.501i 0.774818 0.774818i −0.204127 0.978944i \(-0.565436\pi\)
0.978944 + 0.204127i \(0.0654355\pi\)
\(132\) 0 0
\(133\) −8.25171 + 159.989i −0.0620430 + 1.20292i
\(134\) 0 0
\(135\) 148.820i 1.10237i
\(136\) 0 0
\(137\) 233.344i 1.70324i −0.524158 0.851621i \(-0.675620\pi\)
0.524158 0.851621i \(-0.324380\pi\)
\(138\) 0 0
\(139\) −62.9228 62.9228i −0.452682 0.452682i 0.443562 0.896244i \(-0.353715\pi\)
−0.896244 + 0.443562i \(0.853715\pi\)
\(140\) 0 0
\(141\) −80.0442 80.0442i −0.567689 0.567689i
\(142\) 0 0
\(143\) 5.33200i 0.0372867i
\(144\) 0 0
\(145\) 229.209i 1.58075i
\(146\) 0 0
\(147\) −105.890 130.321i −0.720340 0.886537i
\(148\) 0 0
\(149\) −147.549 + 147.549i −0.990264 + 0.990264i −0.999953 0.00968935i \(-0.996916\pi\)
0.00968935 + 0.999953i \(0.496916\pi\)
\(150\) 0 0
\(151\) 47.8397i 0.316819i −0.987373 0.158410i \(-0.949363\pi\)
0.987373 0.158410i \(-0.0506367\pi\)
\(152\) 0 0
\(153\) 36.4163 0.238015
\(154\) 0 0
\(155\) 187.914 187.914i 1.21235 1.21235i
\(156\) 0 0
\(157\) 62.4830 62.4830i 0.397981 0.397981i −0.479539 0.877520i \(-0.659196\pi\)
0.877520 + 0.479539i \(0.159196\pi\)
\(158\) 0 0
\(159\) 46.1418i 0.290200i
\(160\) 0 0
\(161\) −176.883 196.122i −1.09865 1.21815i
\(162\) 0 0
\(163\) −43.0047 43.0047i −0.263832 0.263832i 0.562777 0.826609i \(-0.309733\pi\)
−0.826609 + 0.562777i \(0.809733\pi\)
\(164\) 0 0
\(165\) 272.057 272.057i 1.64883 1.64883i
\(166\) 0 0
\(167\) 146.222 0.875580 0.437790 0.899077i \(-0.355761\pi\)
0.437790 + 0.899077i \(0.355761\pi\)
\(168\) 0 0
\(169\) 168.891i 0.999357i
\(170\) 0 0
\(171\) −44.3980 44.3980i −0.259638 0.259638i
\(172\) 0 0
\(173\) −180.530 + 180.530i −1.04353 + 1.04353i −0.0445174 + 0.999009i \(0.514175\pi\)
−0.999009 + 0.0445174i \(0.985825\pi\)
\(174\) 0 0
\(175\) −108.671 120.491i −0.620979 0.688519i
\(176\) 0 0
\(177\) −223.339 −1.26180
\(178\) 0 0
\(179\) −5.67020 5.67020i −0.0316771 0.0316771i 0.691091 0.722768i \(-0.257130\pi\)
−0.722768 + 0.691091i \(0.757130\pi\)
\(180\) 0 0
\(181\) 15.3127 + 15.3127i 0.0846008 + 0.0846008i 0.748141 0.663540i \(-0.230947\pi\)
−0.663540 + 0.748141i \(0.730947\pi\)
\(182\) 0 0
\(183\) 281.331i 1.53733i
\(184\) 0 0
\(185\) 52.7875 0.285338
\(186\) 0 0
\(187\) 151.815 + 151.815i 0.811844 + 0.811844i
\(188\) 0 0
\(189\) −149.882 7.73044i −0.793027 0.0409018i
\(190\) 0 0
\(191\) 64.2617 0.336449 0.168224 0.985749i \(-0.446197\pi\)
0.168224 + 0.985749i \(0.446197\pi\)
\(192\) 0 0
\(193\) −210.607 −1.09123 −0.545614 0.838037i \(-0.683704\pi\)
−0.545614 + 0.838037i \(0.683704\pi\)
\(194\) 0 0
\(195\) −5.54450 + 5.54450i −0.0284333 + 0.0284333i
\(196\) 0 0
\(197\) 17.6884 17.6884i 0.0897890 0.0897890i −0.660786 0.750575i \(-0.729777\pi\)
0.750575 + 0.660786i \(0.229777\pi\)
\(198\) 0 0
\(199\) −300.902 −1.51207 −0.756036 0.654530i \(-0.772867\pi\)
−0.756036 + 0.654530i \(0.772867\pi\)
\(200\) 0 0
\(201\) −150.094 −0.746739
\(202\) 0 0
\(203\) −230.845 11.9063i −1.13717 0.0586516i
\(204\) 0 0
\(205\) 65.6586 + 65.6586i 0.320286 + 0.320286i
\(206\) 0 0
\(207\) 103.512 0.500056
\(208\) 0 0
\(209\) 370.180i 1.77119i
\(210\) 0 0
\(211\) 179.684 + 179.684i 0.851583 + 0.851583i 0.990328 0.138745i \(-0.0443068\pi\)
−0.138745 + 0.990328i \(0.544307\pi\)
\(212\) 0 0
\(213\) 11.4320 + 11.4320i 0.0536713 + 0.0536713i
\(214\) 0 0
\(215\) −272.509 −1.26748
\(216\) 0 0
\(217\) 179.494 + 199.017i 0.827162 + 0.917127i
\(218\) 0 0
\(219\) −180.944 + 180.944i −0.826227 + 0.826227i
\(220\) 0 0
\(221\) −3.09397 3.09397i −0.0139999 0.0139999i
\(222\) 0 0
\(223\) 57.9078i 0.259676i 0.991535 + 0.129838i \(0.0414458\pi\)
−0.991535 + 0.129838i \(0.958554\pi\)
\(224\) 0 0
\(225\) 63.5941 0.282641
\(226\) 0 0
\(227\) 234.014 234.014i 1.03090 1.03090i 0.0313934 0.999507i \(-0.490006\pi\)
0.999507 0.0313934i \(-0.00999448\pi\)
\(228\) 0 0
\(229\) −58.2181 58.2181i −0.254228 0.254228i 0.568474 0.822701i \(-0.307534\pi\)
−0.822701 + 0.568474i \(0.807534\pi\)
\(230\) 0 0
\(231\) 259.867 + 288.131i 1.12497 + 1.24732i
\(232\) 0 0
\(233\) 85.3285i 0.366217i −0.983093 0.183108i \(-0.941384\pi\)
0.983093 0.183108i \(-0.0586159\pi\)
\(234\) 0 0
\(235\) 162.130 162.130i 0.689913 0.689913i
\(236\) 0 0
\(237\) −78.9570 + 78.9570i −0.333152 + 0.333152i
\(238\) 0 0
\(239\) −247.623 −1.03608 −0.518040 0.855356i \(-0.673338\pi\)
−0.518040 + 0.855356i \(0.673338\pi\)
\(240\) 0 0
\(241\) 32.0526i 0.132998i 0.997786 + 0.0664991i \(0.0211830\pi\)
−0.997786 + 0.0664991i \(0.978817\pi\)
\(242\) 0 0
\(243\) 101.426 101.426i 0.417390 0.417390i
\(244\) 0 0
\(245\) 263.965 214.480i 1.07741 0.875429i
\(246\) 0 0
\(247\) 7.54422i 0.0305434i
\(248\) 0 0
\(249\) 320.939i 1.28891i
\(250\) 0 0
\(251\) −30.9176 30.9176i −0.123178 0.123178i 0.642831 0.766008i \(-0.277760\pi\)
−0.766008 + 0.642831i \(0.777760\pi\)
\(252\) 0 0
\(253\) 431.527 + 431.527i 1.70564 + 1.70564i
\(254\) 0 0
\(255\) 315.730i 1.23816i
\(256\) 0 0
\(257\) 248.945i 0.968656i 0.874886 + 0.484328i \(0.160936\pi\)
−0.874886 + 0.484328i \(0.839064\pi\)
\(258\) 0 0
\(259\) −2.74205 + 53.1643i −0.0105871 + 0.205268i
\(260\) 0 0
\(261\) 64.0612 64.0612i 0.245445 0.245445i
\(262\) 0 0
\(263\) 157.837i 0.600142i 0.953917 + 0.300071i \(0.0970104\pi\)
−0.953917 + 0.300071i \(0.902990\pi\)
\(264\) 0 0
\(265\) −93.4602 −0.352680
\(266\) 0 0
\(267\) 37.8122 37.8122i 0.141619 0.141619i
\(268\) 0 0
\(269\) 49.6844 49.6844i 0.184700 0.184700i −0.608700 0.793400i \(-0.708309\pi\)
0.793400 + 0.608700i \(0.208309\pi\)
\(270\) 0 0
\(271\) 343.687i 1.26822i 0.773244 + 0.634108i \(0.218633\pi\)
−0.773244 + 0.634108i \(0.781367\pi\)
\(272\) 0 0
\(273\) −5.29607 5.87209i −0.0193995 0.0215095i
\(274\) 0 0
\(275\) 265.116 + 265.116i 0.964058 + 0.964058i
\(276\) 0 0
\(277\) 294.560 294.560i 1.06339 1.06339i 0.0655437 0.997850i \(-0.479122\pi\)
0.997850 0.0655437i \(-0.0208782\pi\)
\(278\) 0 0
\(279\) −105.039 −0.376485
\(280\) 0 0
\(281\) 261.174i 0.929446i −0.885456 0.464723i \(-0.846154\pi\)
0.885456 0.464723i \(-0.153846\pi\)
\(282\) 0 0
\(283\) 314.008 + 314.008i 1.10957 + 1.10957i 0.993207 + 0.116361i \(0.0371228\pi\)
0.116361 + 0.993207i \(0.462877\pi\)
\(284\) 0 0
\(285\) 384.933 384.933i 1.35064 1.35064i
\(286\) 0 0
\(287\) −69.5379 + 62.7167i −0.242292 + 0.218525i
\(288\) 0 0
\(289\) 112.814 0.390361
\(290\) 0 0
\(291\) −10.4288 10.4288i −0.0358378 0.0358378i
\(292\) 0 0
\(293\) −338.825 338.825i −1.15640 1.15640i −0.985244 0.171156i \(-0.945250\pi\)
−0.171156 0.985244i \(-0.554750\pi\)
\(294\) 0 0
\(295\) 452.372i 1.53347i
\(296\) 0 0
\(297\) 346.795 1.16766
\(298\) 0 0
\(299\) −8.79447 8.79447i −0.0294129 0.0294129i
\(300\) 0 0
\(301\) 14.1555 274.454i 0.0470282 0.911809i
\(302\) 0 0
\(303\) −499.799 −1.64950
\(304\) 0 0
\(305\) 569.837 1.86832
\(306\) 0 0
\(307\) 65.2409 65.2409i 0.212511 0.212511i −0.592822 0.805333i \(-0.701986\pi\)
0.805333 + 0.592822i \(0.201986\pi\)
\(308\) 0 0
\(309\) −370.481 + 370.481i −1.19897 + 1.19897i
\(310\) 0 0
\(311\) 251.679 0.809258 0.404629 0.914481i \(-0.367401\pi\)
0.404629 + 0.914481i \(0.367401\pi\)
\(312\) 0 0
\(313\) 502.424 1.60519 0.802594 0.596526i \(-0.203453\pi\)
0.802594 + 0.596526i \(0.203453\pi\)
\(314\) 0 0
\(315\) −6.86622 + 133.126i −0.0217975 + 0.422623i
\(316\) 0 0
\(317\) −108.655 108.655i −0.342760 0.342760i 0.514644 0.857404i \(-0.327924\pi\)
−0.857404 + 0.514644i \(0.827924\pi\)
\(318\) 0 0
\(319\) 534.126 1.67438
\(320\) 0 0
\(321\) 350.296i 1.09126i
\(322\) 0 0
\(323\) 214.802 + 214.802i 0.665022 + 0.665022i
\(324\) 0 0
\(325\) −5.40304 5.40304i −0.0166247 0.0166247i
\(326\) 0 0
\(327\) 27.6936 0.0846900
\(328\) 0 0
\(329\) 154.865 + 171.709i 0.470715 + 0.521911i
\(330\) 0 0
\(331\) −135.473 + 135.473i −0.409284 + 0.409284i −0.881489 0.472205i \(-0.843458\pi\)
0.472205 + 0.881489i \(0.343458\pi\)
\(332\) 0 0
\(333\) −14.7535 14.7535i −0.0443047 0.0443047i
\(334\) 0 0
\(335\) 304.016i 0.907512i
\(336\) 0 0
\(337\) 96.5075 0.286372 0.143186 0.989696i \(-0.454265\pi\)
0.143186 + 0.989696i \(0.454265\pi\)
\(338\) 0 0
\(339\) 363.732 363.732i 1.07295 1.07295i
\(340\) 0 0
\(341\) −437.896 437.896i −1.28415 1.28415i
\(342\) 0 0
\(343\) 202.300 + 276.991i 0.589795 + 0.807553i
\(344\) 0 0
\(345\) 897.449i 2.60130i
\(346\) 0 0
\(347\) 310.963 310.963i 0.896146 0.896146i −0.0989470 0.995093i \(-0.531547\pi\)
0.995093 + 0.0989470i \(0.0315474\pi\)
\(348\) 0 0
\(349\) −92.9768 + 92.9768i −0.266409 + 0.266409i −0.827651 0.561242i \(-0.810324\pi\)
0.561242 + 0.827651i \(0.310324\pi\)
\(350\) 0 0
\(351\) −7.06764 −0.0201357
\(352\) 0 0
\(353\) 9.13336i 0.0258735i −0.999916 0.0129368i \(-0.995882\pi\)
0.999916 0.0129368i \(-0.00411802\pi\)
\(354\) 0 0
\(355\) −23.1555 + 23.1555i −0.0652267 + 0.0652267i
\(356\) 0 0
\(357\) −317.984 16.4006i −0.890712 0.0459401i
\(358\) 0 0
\(359\) 209.563i 0.583741i −0.956458 0.291871i \(-0.905722\pi\)
0.956458 0.291871i \(-0.0942777\pi\)
\(360\) 0 0
\(361\) 162.765i 0.450874i
\(362\) 0 0
\(363\) −340.771 340.771i −0.938764 0.938764i
\(364\) 0 0
\(365\) −366.502 366.502i −1.00411 1.00411i
\(366\) 0 0
\(367\) 538.514i 1.46734i −0.679506 0.733670i \(-0.737806\pi\)
0.679506 0.733670i \(-0.262194\pi\)
\(368\) 0 0
\(369\) 36.7016i 0.0994623i
\(370\) 0 0
\(371\) 4.85479 94.1274i 0.0130857 0.253713i
\(372\) 0 0
\(373\) −357.081 + 357.081i −0.957323 + 0.957323i −0.999126 0.0418032i \(-0.986690\pi\)
0.0418032 + 0.999126i \(0.486690\pi\)
\(374\) 0 0
\(375\) 43.2999i 0.115466i
\(376\) 0 0
\(377\) −10.8854 −0.0288738
\(378\) 0 0
\(379\) −251.266 + 251.266i −0.662972 + 0.662972i −0.956079 0.293108i \(-0.905311\pi\)
0.293108 + 0.956079i \(0.405311\pi\)
\(380\) 0 0
\(381\) −249.919 + 249.919i −0.655955 + 0.655955i
\(382\) 0 0
\(383\) 438.868i 1.14587i −0.819601 0.572935i \(-0.805805\pi\)
0.819601 0.572935i \(-0.194195\pi\)
\(384\) 0 0
\(385\) −583.610 + 526.361i −1.51587 + 1.36717i
\(386\) 0 0
\(387\) 76.1630 + 76.1630i 0.196804 + 0.196804i
\(388\) 0 0
\(389\) 391.861 391.861i 1.00735 1.00735i 0.00738172 0.999973i \(-0.497650\pi\)
0.999973 0.00738172i \(-0.00234970\pi\)
\(390\) 0 0
\(391\) −500.799 −1.28082
\(392\) 0 0
\(393\) 491.909i 1.25168i
\(394\) 0 0
\(395\) −159.927 159.927i −0.404880 0.404880i
\(396\) 0 0
\(397\) 134.883 134.883i 0.339755 0.339755i −0.516520 0.856275i \(-0.672773\pi\)
0.856275 + 0.516520i \(0.172773\pi\)
\(398\) 0 0
\(399\) 367.685 + 407.676i 0.921517 + 1.02174i
\(400\) 0 0
\(401\) −390.589 −0.974038 −0.487019 0.873391i \(-0.661916\pi\)
−0.487019 + 0.873391i \(0.661916\pi\)
\(402\) 0 0
\(403\) 8.92428 + 8.92428i 0.0221446 + 0.0221446i
\(404\) 0 0
\(405\) 481.807 + 481.807i 1.18965 + 1.18965i
\(406\) 0 0
\(407\) 123.011i 0.302238i
\(408\) 0 0
\(409\) −111.876 −0.273536 −0.136768 0.990603i \(-0.543672\pi\)
−0.136768 + 0.990603i \(0.543672\pi\)
\(410\) 0 0
\(411\) −565.433 565.433i −1.37575 1.37575i
\(412\) 0 0
\(413\) 455.602 + 23.4985i 1.10315 + 0.0568971i
\(414\) 0 0
\(415\) −650.063 −1.56642
\(416\) 0 0
\(417\) −304.946 −0.731285
\(418\) 0 0
\(419\) −106.956 + 106.956i −0.255264 + 0.255264i −0.823125 0.567861i \(-0.807771\pi\)
0.567861 + 0.823125i \(0.307771\pi\)
\(420\) 0 0
\(421\) −102.773 + 102.773i −0.244115 + 0.244115i −0.818550 0.574435i \(-0.805222\pi\)
0.574435 + 0.818550i \(0.305222\pi\)
\(422\) 0 0
\(423\) −90.6266 −0.214247
\(424\) 0 0
\(425\) −307.675 −0.723941
\(426\) 0 0
\(427\) −29.6002 + 573.905i −0.0693213 + 1.34404i
\(428\) 0 0
\(429\) 12.9204 + 12.9204i 0.0301174 + 0.0301174i
\(430\) 0 0
\(431\) 154.126 0.357601 0.178800 0.983885i \(-0.442778\pi\)
0.178800 + 0.983885i \(0.442778\pi\)
\(432\) 0 0
\(433\) 93.0931i 0.214996i −0.994205 0.107498i \(-0.965716\pi\)
0.994205 0.107498i \(-0.0342838\pi\)
\(434\) 0 0
\(435\) 555.413 + 555.413i 1.27681 + 1.27681i
\(436\) 0 0
\(437\) 610.565 + 610.565i 1.39717 + 1.39717i
\(438\) 0 0
\(439\) 460.835 1.04974 0.524869 0.851183i \(-0.324114\pi\)
0.524869 + 0.851183i \(0.324114\pi\)
\(440\) 0 0
\(441\) −133.720 13.8305i −0.303219 0.0313616i
\(442\) 0 0
\(443\) 499.302 499.302i 1.12709 1.12709i 0.136446 0.990648i \(-0.456432\pi\)
0.990648 0.136446i \(-0.0435680\pi\)
\(444\) 0 0
\(445\) 76.5885 + 76.5885i 0.172109 + 0.172109i
\(446\) 0 0
\(447\) 715.075i 1.59972i
\(448\) 0 0
\(449\) 504.282 1.12312 0.561562 0.827435i \(-0.310201\pi\)
0.561562 + 0.827435i \(0.310201\pi\)
\(450\) 0 0
\(451\) 153.004 153.004i 0.339256 0.339256i
\(452\) 0 0
\(453\) −115.924 115.924i −0.255903 0.255903i
\(454\) 0 0
\(455\) 11.8939 10.7272i 0.0261405 0.0235762i
\(456\) 0 0
\(457\) 392.566i 0.859006i −0.903065 0.429503i \(-0.858689\pi\)
0.903065 0.429503i \(-0.141311\pi\)
\(458\) 0 0
\(459\) −201.233 + 201.233i −0.438416 + 0.438416i
\(460\) 0 0
\(461\) −249.810 + 249.810i −0.541888 + 0.541888i −0.924082 0.382194i \(-0.875168\pi\)
0.382194 + 0.924082i \(0.375168\pi\)
\(462\) 0 0
\(463\) −123.976 −0.267767 −0.133884 0.990997i \(-0.542745\pi\)
−0.133884 + 0.990997i \(0.542745\pi\)
\(464\) 0 0
\(465\) 910.696i 1.95849i
\(466\) 0 0
\(467\) −254.905 + 254.905i −0.545836 + 0.545836i −0.925234 0.379398i \(-0.876131\pi\)
0.379398 + 0.925234i \(0.376131\pi\)
\(468\) 0 0
\(469\) 306.187 + 15.7921i 0.652850 + 0.0336719i
\(470\) 0 0
\(471\) 302.814i 0.642918i
\(472\) 0 0
\(473\) 635.028i 1.34255i
\(474\) 0 0
\(475\) 375.111 + 375.111i 0.789708 + 0.789708i
\(476\) 0 0
\(477\) 26.1210 + 26.1210i 0.0547610 + 0.0547610i
\(478\) 0 0
\(479\) 437.996i 0.914397i 0.889365 + 0.457199i \(0.151147\pi\)
−0.889365 + 0.457199i \(0.848853\pi\)
\(480\) 0 0
\(481\) 2.50695i 0.00521195i
\(482\) 0 0
\(483\) −903.856 46.6180i −1.87134 0.0965176i
\(484\) 0 0
\(485\) 21.1235 21.1235i 0.0435537 0.0435537i
\(486\) 0 0
\(487\) 543.976i 1.11699i −0.829507 0.558497i \(-0.811378\pi\)
0.829507 0.558497i \(-0.188622\pi\)
\(488\) 0 0
\(489\) −208.415 −0.426207
\(490\) 0 0
\(491\) 257.435 257.435i 0.524308 0.524308i −0.394562 0.918870i \(-0.629104\pi\)
0.918870 + 0.394562i \(0.129104\pi\)
\(492\) 0 0
\(493\) −309.935 + 309.935i −0.628671 + 0.628671i
\(494\) 0 0
\(495\) 308.025i 0.622273i
\(496\) 0 0
\(497\) −22.1180 24.5236i −0.0445030 0.0493433i
\(498\) 0 0
\(499\) −666.076 666.076i −1.33482 1.33482i −0.900997 0.433826i \(-0.857163\pi\)
−0.433826 0.900997i \(-0.642837\pi\)
\(500\) 0 0
\(501\) 354.321 354.321i 0.707227 0.707227i
\(502\) 0 0
\(503\) −206.235 −0.410009 −0.205005 0.978761i \(-0.565721\pi\)
−0.205005 + 0.978761i \(0.565721\pi\)
\(504\) 0 0
\(505\) 1012.34i 2.00464i
\(506\) 0 0
\(507\) 409.253 + 409.253i 0.807205 + 0.807205i
\(508\) 0 0
\(509\) −239.572 + 239.572i −0.470671 + 0.470671i −0.902132 0.431461i \(-0.857998\pi\)
0.431461 + 0.902132i \(0.357998\pi\)
\(510\) 0 0
\(511\) 388.156 350.080i 0.759601 0.685088i
\(512\) 0 0
\(513\) 490.678 0.956488
\(514\) 0 0
\(515\) −750.410 750.410i −1.45711 1.45711i
\(516\) 0 0
\(517\) −377.811 377.811i −0.730775 0.730775i
\(518\) 0 0
\(519\) 874.911i 1.68576i
\(520\) 0 0
\(521\) −630.759 −1.21067 −0.605335 0.795971i \(-0.706961\pi\)
−0.605335 + 0.795971i \(0.706961\pi\)
\(522\) 0 0
\(523\) 344.460 + 344.460i 0.658624 + 0.658624i 0.955054 0.296431i \(-0.0957963\pi\)
−0.296431 + 0.955054i \(0.595796\pi\)
\(524\) 0 0
\(525\) −555.300 28.6406i −1.05771 0.0545535i
\(526\) 0 0
\(527\) 508.191 0.964310
\(528\) 0 0
\(529\) −894.499 −1.69092
\(530\) 0 0
\(531\) −126.433 + 126.433i −0.238103 + 0.238103i
\(532\) 0 0
\(533\) −3.11821 + 3.11821i −0.00585030 + 0.00585030i
\(534\) 0 0
\(535\) −709.524 −1.32621
\(536\) 0 0
\(537\) −27.4798 −0.0511728
\(538\) 0 0
\(539\) −499.803 615.118i −0.927279 1.14122i
\(540\) 0 0
\(541\) 569.533 + 569.533i 1.05274 + 1.05274i 0.998529 + 0.0542113i \(0.0172645\pi\)
0.0542113 + 0.998529i \(0.482736\pi\)
\(542\) 0 0
\(543\) 74.2109 0.136668
\(544\) 0 0
\(545\) 56.0934i 0.102924i
\(546\) 0 0
\(547\) 476.145 + 476.145i 0.870467 + 0.870467i 0.992523 0.122057i \(-0.0389489\pi\)
−0.122057 + 0.992523i \(0.538949\pi\)
\(548\) 0 0
\(549\) −159.263 159.263i −0.290096 0.290096i
\(550\) 0 0
\(551\) 755.733 1.37157
\(552\) 0 0
\(553\) 169.377 152.762i 0.306287 0.276242i
\(554\) 0 0
\(555\) 127.913 127.913i 0.230474 0.230474i
\(556\) 0 0
\(557\) −2.03506 2.03506i −0.00365361 0.00365361i 0.705278 0.708931i \(-0.250822\pi\)
−0.708931 + 0.705278i \(0.750822\pi\)
\(558\) 0 0
\(559\) 12.9418i 0.0231517i
\(560\) 0 0
\(561\) 735.747 1.31149
\(562\) 0 0
\(563\) −640.792 + 640.792i −1.13817 + 1.13817i −0.149397 + 0.988777i \(0.547733\pi\)
−0.988777 + 0.149397i \(0.952267\pi\)
\(564\) 0 0
\(565\) 736.739 + 736.739i 1.30396 + 1.30396i
\(566\) 0 0
\(567\) −510.274 + 460.219i −0.899953 + 0.811673i
\(568\) 0 0
\(569\) 148.984i 0.261835i 0.991393 + 0.130917i \(0.0417922\pi\)
−0.991393 + 0.130917i \(0.958208\pi\)
\(570\) 0 0
\(571\) −201.831 + 201.831i −0.353469 + 0.353469i −0.861399 0.507930i \(-0.830411\pi\)
0.507930 + 0.861399i \(0.330411\pi\)
\(572\) 0 0
\(573\) 155.717 155.717i 0.271758 0.271758i
\(574\) 0 0
\(575\) −874.551 −1.52096
\(576\) 0 0
\(577\) 231.147i 0.400601i 0.979735 + 0.200300i \(0.0641918\pi\)
−0.979735 + 0.200300i \(0.935808\pi\)
\(578\) 0 0
\(579\) −510.337 + 510.337i −0.881411 + 0.881411i
\(580\) 0 0
\(581\) 33.7675 654.704i 0.0581197 1.12686i
\(582\) 0 0
\(583\) 217.790i 0.373569i
\(584\) 0 0
\(585\) 6.27752i 0.0107308i
\(586\) 0 0
\(587\) 644.898 + 644.898i 1.09863 + 1.09863i 0.994571 + 0.104063i \(0.0331844\pi\)
0.104063 + 0.994571i \(0.466816\pi\)
\(588\) 0 0
\(589\) −619.577 619.577i −1.05191 1.05191i
\(590\) 0 0
\(591\) 85.7243i 0.145050i
\(592\) 0 0
\(593\) 883.947i 1.49064i −0.666709 0.745318i \(-0.732298\pi\)
0.666709 0.745318i \(-0.267702\pi\)
\(594\) 0 0
\(595\) 33.2195 644.077i 0.0558310 1.08248i
\(596\) 0 0
\(597\) −729.139 + 729.139i −1.22134 + 1.22134i
\(598\) 0 0
\(599\) 978.614i 1.63375i 0.576817 + 0.816873i \(0.304295\pi\)
−0.576817 + 0.816873i \(0.695705\pi\)
\(600\) 0 0
\(601\) −569.750 −0.948004 −0.474002 0.880524i \(-0.657191\pi\)
−0.474002 + 0.880524i \(0.657191\pi\)
\(602\) 0 0
\(603\) −84.9690 + 84.9690i −0.140910 + 0.140910i
\(604\) 0 0
\(605\) 690.233 690.233i 1.14088 1.14088i
\(606\) 0 0
\(607\) 119.852i 0.197450i −0.995115 0.0987249i \(-0.968524\pi\)
0.995115 0.0987249i \(-0.0314764\pi\)
\(608\) 0 0
\(609\) −588.229 + 530.527i −0.965893 + 0.871145i
\(610\) 0 0
\(611\) 7.69975 + 7.69975i 0.0126019 + 0.0126019i
\(612\) 0 0
\(613\) −442.123 + 442.123i −0.721245 + 0.721245i −0.968859 0.247614i \(-0.920353\pi\)
0.247614 + 0.968859i \(0.420353\pi\)
\(614\) 0 0
\(615\) 318.204 0.517405
\(616\) 0 0
\(617\) 870.225i 1.41041i −0.709002 0.705206i \(-0.750854\pi\)
0.709002 0.705206i \(-0.249146\pi\)
\(618\) 0 0
\(619\) −392.513 392.513i −0.634109 0.634109i 0.314987 0.949096i \(-0.398000\pi\)
−0.949096 + 0.314987i \(0.898000\pi\)
\(620\) 0 0
\(621\) −571.995 + 571.995i −0.921087 + 0.921087i
\(622\) 0 0
\(623\) −81.1137 + 73.1569i −0.130199 + 0.117427i
\(624\) 0 0
\(625\) 667.195 1.06751
\(626\) 0 0
\(627\) −897.009 897.009i −1.43064 1.43064i
\(628\) 0 0
\(629\) 71.3788 + 71.3788i 0.113480 + 0.113480i
\(630\) 0 0
\(631\) 252.226i 0.399724i −0.979824 0.199862i \(-0.935951\pi\)
0.979824 0.199862i \(-0.0640494\pi\)
\(632\) 0 0
\(633\) 870.811 1.37569
\(634\) 0 0
\(635\) −506.211 506.211i −0.797183 0.797183i
\(636\) 0 0
\(637\) 10.1859 + 12.5361i 0.0159905 + 0.0196798i
\(638\) 0 0
\(639\) 12.9434 0.0202557
\(640\) 0 0
\(641\) 874.134 1.36370 0.681852 0.731490i \(-0.261175\pi\)
0.681852 + 0.731490i \(0.261175\pi\)
\(642\) 0 0
\(643\) 471.331 471.331i 0.733019 0.733019i −0.238198 0.971217i \(-0.576557\pi\)
0.971217 + 0.238198i \(0.0765566\pi\)
\(644\) 0 0
\(645\) −660.337 + 660.337i −1.02378 + 1.02378i
\(646\) 0 0
\(647\) −160.444 −0.247982 −0.123991 0.992283i \(-0.539569\pi\)
−0.123991 + 0.992283i \(0.539569\pi\)
\(648\) 0 0
\(649\) −1054.16 −1.62429
\(650\) 0 0
\(651\) 917.197 + 47.3061i 1.40890 + 0.0726668i
\(652\) 0 0
\(653\) −180.797 180.797i −0.276871 0.276871i 0.554988 0.831859i \(-0.312723\pi\)
−0.831859 + 0.554988i \(0.812723\pi\)
\(654\) 0 0
\(655\) 996.363 1.52116
\(656\) 0 0
\(657\) 204.866i 0.311820i
\(658\) 0 0
\(659\) −61.5911 61.5911i −0.0934615 0.0934615i 0.658830 0.752292i \(-0.271052\pi\)
−0.752292 + 0.658830i \(0.771052\pi\)
\(660\) 0 0
\(661\) −380.712 380.712i −0.575963 0.575963i 0.357825 0.933789i \(-0.383518\pi\)
−0.933789 + 0.357825i \(0.883518\pi\)
\(662\) 0 0
\(663\) −14.9944 −0.0226161
\(664\) 0 0
\(665\) −825.748 + 744.747i −1.24173 + 1.11992i
\(666\) 0 0
\(667\) −880.975 + 880.975i −1.32080 + 1.32080i
\(668\) 0 0
\(669\) 140.321 + 140.321i 0.209747 + 0.209747i
\(670\) 0 0
\(671\) 1327.89i 1.97897i
\(672\) 0 0
\(673\) −658.648 −0.978675 −0.489337 0.872095i \(-0.662761\pi\)
−0.489337 + 0.872095i \(0.662761\pi\)
\(674\) 0 0
\(675\) −351.415 + 351.415i −0.520615 + 0.520615i
\(676\) 0 0
\(677\) 850.741 + 850.741i 1.25663 + 1.25663i 0.952690 + 0.303944i \(0.0983035\pi\)
0.303944 + 0.952690i \(0.401697\pi\)
\(678\) 0 0
\(679\) 20.1771 + 22.3716i 0.0297159 + 0.0329479i
\(680\) 0 0
\(681\) 1134.11i 1.66537i
\(682\) 0 0
\(683\) 391.331 391.331i 0.572958 0.572958i −0.359996 0.932954i \(-0.617222\pi\)
0.932954 + 0.359996i \(0.117222\pi\)
\(684\) 0 0
\(685\) 1145.29 1145.29i 1.67195 1.67195i
\(686\) 0 0
\(687\) −282.145 −0.410692
\(688\) 0 0
\(689\) 4.43855i 0.00644201i
\(690\) 0 0
\(691\) 144.012 144.012i 0.208410 0.208410i −0.595181 0.803592i \(-0.702920\pi\)
0.803592 + 0.595181i \(0.202920\pi\)
\(692\) 0 0
\(693\) 310.224 + 16.0004i 0.447654 + 0.0230885i
\(694\) 0 0
\(695\) 617.668i 0.888731i
\(696\) 0 0
\(697\) 177.566i 0.254758i
\(698\) 0 0
\(699\) −206.766 206.766i −0.295802 0.295802i
\(700\) 0 0
\(701\) 196.926 + 196.926i 0.280922 + 0.280922i 0.833477 0.552555i \(-0.186347\pi\)
−0.552555 + 0.833477i \(0.686347\pi\)
\(702\) 0 0
\(703\) 174.047i 0.247578i
\(704\) 0 0
\(705\) 785.736i 1.11452i
\(706\) 0 0
\(707\) 1019.57 + 52.5862i 1.44211 + 0.0743793i
\(708\) 0 0
\(709\) 456.400 456.400i 0.643724 0.643724i −0.307745 0.951469i \(-0.599574\pi\)
0.951469 + 0.307745i \(0.0995744\pi\)
\(710\) 0 0
\(711\) 89.3956i 0.125732i
\(712\) 0 0
\(713\) 1444.51 2.02596
\(714\) 0 0
\(715\) −26.1702 + 26.1702i −0.0366017 + 0.0366017i
\(716\) 0 0
\(717\) −600.034 + 600.034i −0.836867 + 0.836867i
\(718\) 0 0
\(719\) 1283.27i 1.78479i 0.451251 + 0.892397i \(0.350978\pi\)
−0.451251 + 0.892397i \(0.649022\pi\)
\(720\) 0 0
\(721\) 794.747 716.787i 1.10228 0.994157i
\(722\) 0 0
\(723\) 77.6689 + 77.6689i 0.107426 + 0.107426i
\(724\) 0 0
\(725\) −541.242 + 541.242i −0.746541 + 0.746541i
\(726\) 0 0
\(727\) 573.848 0.789337 0.394669 0.918823i \(-0.370859\pi\)
0.394669 + 0.918823i \(0.370859\pi\)
\(728\) 0 0
\(729\) 391.939i 0.537639i
\(730\) 0 0
\(731\) −368.485 368.485i −0.504083 0.504083i
\(732\) 0 0
\(733\) −21.8202 + 21.8202i −0.0297684 + 0.0297684i −0.721834 0.692066i \(-0.756701\pi\)
0.692066 + 0.721834i \(0.256701\pi\)
\(734\) 0 0
\(735\) 119.911 1159.36i 0.163144 1.57735i
\(736\) 0 0
\(737\) −708.450 −0.961262
\(738\) 0 0
\(739\) 374.759 + 374.759i 0.507117 + 0.507117i 0.913640 0.406523i \(-0.133259\pi\)
−0.406523 + 0.913640i \(0.633259\pi\)
\(740\) 0 0
\(741\) 18.2810 + 18.2810i 0.0246707 + 0.0246707i
\(742\) 0 0
\(743\) 1226.17i 1.65029i −0.564919 0.825146i \(-0.691093\pi\)
0.564919 0.825146i \(-0.308907\pi\)
\(744\) 0 0
\(745\) −1448.38 −1.94414
\(746\) 0 0
\(747\) 181.685 + 181.685i 0.243219 + 0.243219i
\(748\) 0 0
\(749\) 36.8563 714.590i 0.0492073 0.954058i
\(750\) 0 0
\(751\) 671.894 0.894666 0.447333 0.894367i \(-0.352374\pi\)
0.447333 + 0.894367i \(0.352374\pi\)
\(752\) 0 0
\(753\) −149.837 −0.198987
\(754\) 0 0
\(755\) 234.804 234.804i 0.310999 0.310999i
\(756\) 0 0
\(757\) −637.342 + 637.342i −0.841932 + 0.841932i −0.989110 0.147178i \(-0.952981\pi\)
0.147178 + 0.989110i \(0.452981\pi\)
\(758\) 0 0
\(759\) 2091.33 2.75537
\(760\) 0 0
\(761\) 1184.55 1.55657 0.778285 0.627911i \(-0.216090\pi\)
0.778285 + 0.627911i \(0.216090\pi\)
\(762\) 0 0
\(763\) −56.4939 2.91377i −0.0740418 0.00381884i
\(764\) 0 0
\(765\) 178.736 + 178.736i 0.233642 + 0.233642i
\(766\) 0 0
\(767\) 21.4838 0.0280101
\(768\) 0 0
\(769\) 880.837i 1.14543i 0.819754 + 0.572716i \(0.194110\pi\)
−0.819754 + 0.572716i \(0.805890\pi\)
\(770\) 0 0
\(771\) 603.236 + 603.236i 0.782407 + 0.782407i
\(772\) 0 0
\(773\) 422.394 + 422.394i 0.546434 + 0.546434i 0.925408 0.378973i \(-0.123723\pi\)
−0.378973 + 0.925408i \(0.623723\pi\)
\(774\) 0 0
\(775\) 887.460 1.14511
\(776\) 0 0
\(777\) 122.182 + 135.471i 0.157248 + 0.174351i
\(778\) 0 0
\(779\) 216.485 216.485i 0.277901 0.277901i
\(780\) 0 0
\(781\) 53.9593 + 53.9593i 0.0690900 + 0.0690900i
\(782\) 0 0
\(783\) 707.992i 0.904205i
\(784\) 0 0
\(785\) 613.350 0.781338
\(786\) 0 0
\(787\) −869.911 + 869.911i −1.10535 + 1.10535i −0.111598 + 0.993753i \(0.535597\pi\)
−0.993753 + 0.111598i \(0.964403\pi\)
\(788\) 0 0
\(789\) 382.467 + 382.467i 0.484749 + 0.484749i
\(790\) 0 0
\(791\) −780.268 + 703.728i −0.986432 + 0.889669i
\(792\) 0 0
\(793\) 27.0623i 0.0341265i
\(794\) 0 0
\(795\) −226.470 + 226.470i −0.284868 + 0.284868i
\(796\) 0 0
\(797\) 77.7866 77.7866i 0.0975992 0.0975992i −0.656621 0.754220i \(-0.728015\pi\)
0.754220 + 0.656621i \(0.228015\pi\)
\(798\) 0 0
\(799\) 438.461 0.548762
\(800\) 0 0
\(801\) 42.8112i 0.0534472i
\(802\) 0 0
\(803\) −854.060 + 854.060i −1.06359 + 1.06359i
\(804\) 0 0
\(805\) 94.4248 1830.76i 0.117298 2.27424i
\(806\) 0 0
\(807\) 240.788i 0.298374i
\(808\) 0 0
\(809\) 1278.47i 1.58031i 0.612910 + 0.790153i \(0.289999\pi\)
−0.612910 + 0.790153i \(0.710001\pi\)
\(810\) 0 0
\(811\) −135.617 135.617i −0.167222 0.167222i 0.618535 0.785757i \(-0.287726\pi\)
−0.785757 + 0.618535i \(0.787726\pi\)
\(812\) 0 0
\(813\) 832.812 + 832.812i 1.02437 + 1.02437i
\(814\) 0 0
\(815\) 422.146i 0.517970i
\(816\) 0 0
\(817\) 898.499i 1.09975i
\(818\) 0 0
\(819\) −6.32233 0.326086i −0.00771958 0.000398151i
\(820\) 0 0
\(821\) −225.467 + 225.467i −0.274625 + 0.274625i −0.830959 0.556334i \(-0.812208\pi\)
0.556334 + 0.830959i \(0.312208\pi\)
\(822\) 0 0
\(823\) 719.591i 0.874352i 0.899376 + 0.437176i \(0.144021\pi\)
−0.899376 + 0.437176i \(0.855979\pi\)
\(824\) 0 0
\(825\) 1284.84 1.55739
\(826\) 0 0
\(827\) −824.582 + 824.582i −0.997076 + 0.997076i −0.999996 0.00291969i \(-0.999071\pi\)
0.00291969 + 0.999996i \(0.499071\pi\)
\(828\) 0 0
\(829\) 559.570 559.570i 0.674993 0.674993i −0.283869 0.958863i \(-0.591618\pi\)
0.958863 + 0.283869i \(0.0916182\pi\)
\(830\) 0 0
\(831\) 1427.54i 1.71786i
\(832\) 0 0
\(833\) 646.950 + 66.9132i 0.776651 + 0.0803280i
\(834\) 0 0
\(835\) 717.677 + 717.677i 0.859494 + 0.859494i
\(836\) 0 0
\(837\) 580.438 580.438i 0.693474 0.693474i
\(838\) 0 0
\(839\) 164.817 0.196445 0.0982224 0.995164i \(-0.468684\pi\)
0.0982224 + 0.995164i \(0.468684\pi\)
\(840\) 0 0
\(841\) 249.435i 0.296594i
\(842\) 0 0
\(843\) −632.871 632.871i −0.750736 0.750736i
\(844\) 0 0
\(845\) −828.942 + 828.942i −0.980997 + 0.980997i
\(846\) 0 0
\(847\) 659.306 + 731.014i 0.778401 + 0.863063i
\(848\) 0 0
\(849\) 1521.79 1.79245
\(850\) 0 0
\(851\) 202.891 + 202.891i 0.238415 + 0.238415i
\(852\) 0 0
\(853\) 470.436 + 470.436i 0.551508 + 0.551508i 0.926876 0.375368i \(-0.122484\pi\)
−0.375368 + 0.926876i \(0.622484\pi\)
\(854\) 0 0
\(855\) 435.823i 0.509735i
\(856\) 0 0
\(857\) −6.26986 −0.00731606 −0.00365803 0.999993i \(-0.501164\pi\)
−0.00365803 + 0.999993i \(0.501164\pi\)
\(858\) 0 0
\(859\) 457.662 + 457.662i 0.532784 + 0.532784i 0.921400 0.388616i \(-0.127047\pi\)
−0.388616 + 0.921400i \(0.627047\pi\)
\(860\) 0 0
\(861\) −16.5291 + 320.476i −0.0191976 + 0.372213i
\(862\) 0 0
\(863\) 319.733 0.370490 0.185245 0.982692i \(-0.440692\pi\)
0.185245 + 0.982692i \(0.440692\pi\)
\(864\) 0 0
\(865\) −1772.13 −2.04871
\(866\) 0 0
\(867\) 273.369 273.369i 0.315304 0.315304i
\(868\) 0 0
\(869\) −372.679 + 372.679i −0.428860 + 0.428860i
\(870\) 0 0
\(871\) 14.4381 0.0165765
\(872\) 0 0
\(873\) −11.8076 −0.0135253
\(874\) 0 0
\(875\) −4.55578 + 88.3301i −0.00520661 + 0.100949i
\(876\) 0 0
\(877\) 380.302 + 380.302i 0.433640 + 0.433640i 0.889865 0.456225i \(-0.150799\pi\)
−0.456225 + 0.889865i \(0.650799\pi\)
\(878\) 0 0
\(879\) −1642.06 −1.86810
\(880\) 0 0
\(881\) 695.336i 0.789258i −0.918841 0.394629i \(-0.870873\pi\)
0.918841 0.394629i \(-0.129127\pi\)
\(882\) 0 0
\(883\) 541.268 + 541.268i 0.612987 + 0.612987i 0.943723 0.330736i \(-0.107297\pi\)
−0.330736 + 0.943723i \(0.607297\pi\)
\(884\) 0 0
\(885\) −1096.18 1096.18i −1.23862 1.23862i
\(886\) 0 0
\(887\) −1253.15 −1.41279 −0.706397 0.707816i \(-0.749681\pi\)
−0.706397 + 0.707816i \(0.749681\pi\)
\(888\) 0 0
\(889\) 536.120 483.530i 0.603059 0.543903i
\(890\) 0 0
\(891\) 1122.75 1122.75i 1.26011 1.26011i
\(892\) 0 0
\(893\) −534.563 534.563i −0.598615 0.598615i
\(894\) 0 0
\(895\) 55.6603i 0.0621903i
\(896\) 0 0
\(897\) −42.6210 −0.0475151
\(898\) 0 0
\(899\) 893.978 893.978i 0.994414 0.994414i
\(900\) 0 0
\(901\) −126.376 126.376i −0.140262 0.140262i
\(902\) 0 0
\(903\) −630.749 699.352i −0.698504 0.774476i
\(904\) 0 0
\(905\) 150.314i 0.166093i
\(906\) 0 0
\(907\) −1074.26 + 1074.26i −1.18441 + 1.18441i −0.205817 + 0.978591i \(0.565985\pi\)
−0.978591 + 0.205817i \(0.934015\pi\)
\(908\) 0 0
\(909\) −282.938 + 282.938i −0.311263 + 0.311263i
\(910\) 0 0
\(911\) −675.939 −0.741975 −0.370988 0.928638i \(-0.620981\pi\)
−0.370988 + 0.928638i \(0.620981\pi\)
\(912\) 0 0
\(913\) 1514.84i 1.65919i
\(914\) 0 0
\(915\) 1380.81 1380.81i 1.50909 1.50909i
\(916\) 0 0
\(917\) −51.7561 + 1003.48i −0.0564407 + 1.09430i
\(918\) 0 0
\(919\) 545.667i 0.593762i 0.954915 + 0.296881i \(0.0959464\pi\)
−0.954915 + 0.296881i \(0.904054\pi\)
\(920\) 0 0
\(921\) 316.180i 0.343301i
\(922\) 0 0
\(923\) −1.09968 1.09968i −0.00119142 0.00119142i
\(924\) 0 0
\(925\) 124.650 + 124.650i 0.134756 + 0.134756i
\(926\) 0 0
\(927\) 419.462i 0.452494i
\(928\) 0 0
\(929\) 803.498i 0.864907i −0.901656 0.432453i \(-0.857648\pi\)
0.901656 0.432453i \(-0.142352\pi\)
\(930\) 0 0
\(931\) −707.170 870.329i −0.759581 0.934832i
\(932\) 0 0
\(933\) 609.862 609.862i 0.653657 0.653657i
\(934\) 0 0
\(935\) 1490.26i 1.59386i
\(936\) 0 0
\(937\) −1778.02 −1.89757 −0.948784 0.315927i \(-0.897685\pi\)
−0.948784 + 0.315927i \(0.897685\pi\)
\(938\) 0 0
\(939\) 1217.46 1217.46i 1.29655 1.29655i
\(940\) 0 0
\(941\) −302.133 + 302.133i −0.321076 + 0.321076i −0.849180 0.528104i \(-0.822903\pi\)
0.528104 + 0.849180i \(0.322903\pi\)
\(942\) 0 0
\(943\) 504.723i 0.535231i
\(944\) 0 0
\(945\) −697.700 773.584i −0.738307 0.818607i
\(946\) 0 0
\(947\) 361.945 + 361.945i 0.382202 + 0.382202i 0.871895 0.489693i \(-0.162891\pi\)
−0.489693 + 0.871895i \(0.662891\pi\)
\(948\) 0 0
\(949\) 17.4056 17.4056i 0.0183410 0.0183410i
\(950\) 0 0
\(951\) −526.579 −0.553711
\(952\) 0 0
\(953\) 709.369i 0.744354i 0.928162 + 0.372177i \(0.121389\pi\)
−0.928162 + 0.372177i \(0.878611\pi\)
\(954\) 0 0
\(955\) 315.405 + 315.405i 0.330267 + 0.330267i
\(956\) 0 0
\(957\) 1294.28 1294.28i 1.35243 1.35243i
\(958\) 0 0
\(959\) 1093.97 + 1212.95i 1.14074 + 1.26481i
\(960\) 0 0
\(961\) −504.832 −0.525320
\(962\) 0 0
\(963\) 198.304 + 198.304i 0.205923 + 0.205923i
\(964\) 0 0
\(965\) −1033.69 1033.69i −1.07118 1.07118i
\(966\) 0 0
\(967\) 78.8115i 0.0815011i −0.999169 0.0407505i \(-0.987025\pi\)
0.999169 0.0407505i \(-0.0129749\pi\)
\(968\) 0 0
\(969\) 1041.01 1.07431
\(970\) 0 0
\(971\) 354.033 + 354.033i 0.364606 + 0.364606i 0.865506 0.500899i \(-0.166997\pi\)
−0.500899 + 0.865506i \(0.666997\pi\)
\(972\) 0 0
\(973\) 622.077 + 32.0848i 0.639340 + 0.0329751i
\(974\) 0 0
\(975\) −26.1850 −0.0268564
\(976\) 0 0
\(977\) −1297.64 −1.32819 −0.664094 0.747649i \(-0.731182\pi\)
−0.664094 + 0.747649i \(0.731182\pi\)
\(978\) 0 0
\(979\) 178.474 178.474i 0.182303 0.182303i
\(980\) 0 0
\(981\) 15.6775 15.6775i 0.0159811 0.0159811i
\(982\) 0 0
\(983\) 523.198 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(984\) 0 0
\(985\) 173.635 0.176279
\(986\) 0 0
\(987\) 791.345 + 40.8151i 0.801768 + 0.0413527i
\(988\) 0 0
\(989\) −1047.40 1047.40i −1.05905 1.05905i
\(990\) 0 0
\(991\) −917.642 −0.925976 −0.462988 0.886365i \(-0.653223\pi\)
−0.462988 + 0.886365i \(0.653223\pi\)
\(992\) 0 0
\(993\) 656.550i 0.661178i
\(994\) 0 0
\(995\) −1476.87 1476.87i −1.48429 1.48429i
\(996\) 0 0
\(997\) −129.558 129.558i −0.129948 0.129948i 0.639141 0.769089i \(-0.279290\pi\)
−0.769089 + 0.639141i \(0.779290\pi\)
\(998\) 0 0
\(999\) 163.053 0.163216
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.l.b.209.23 56
4.3 odd 2 112.3.l.b.13.3 56
7.6 odd 2 inner 448.3.l.b.209.6 56
16.5 even 4 inner 448.3.l.b.433.6 56
16.11 odd 4 112.3.l.b.69.4 yes 56
28.27 even 2 112.3.l.b.13.4 yes 56
112.27 even 4 112.3.l.b.69.3 yes 56
112.69 odd 4 inner 448.3.l.b.433.23 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.3.l.b.13.3 56 4.3 odd 2
112.3.l.b.13.4 yes 56 28.27 even 2
112.3.l.b.69.3 yes 56 112.27 even 4
112.3.l.b.69.4 yes 56 16.11 odd 4
448.3.l.b.209.6 56 7.6 odd 2 inner
448.3.l.b.209.23 56 1.1 even 1 trivial
448.3.l.b.433.6 56 16.5 even 4 inner
448.3.l.b.433.23 56 112.69 odd 4 inner