L(s) = 1 | + 2-s + (0.686 − 1.18i)3-s + 4-s + (−1.36 − 2.36i)5-s + (0.686 − 1.18i)6-s + 2.10·7-s + 8-s + (0.556 + 0.964i)9-s + (−1.36 − 2.36i)10-s + (−2.22 − 3.84i)11-s + (0.686 − 1.18i)12-s − 2.07·13-s + 2.10·14-s − 3.75·15-s + 16-s + 3.23·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.396 − 0.686i)3-s + 0.5·4-s + (−0.611 − 1.05i)5-s + (0.280 − 0.485i)6-s + 0.796·7-s + 0.353·8-s + (0.185 + 0.321i)9-s + (−0.432 − 0.748i)10-s + (−0.669 − 1.15i)11-s + (0.198 − 0.343i)12-s − 0.575·13-s + 0.563·14-s − 0.969·15-s + 0.250·16-s + 0.783·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.268 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.268 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.81226 - 1.37616i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.81226 - 1.37616i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 223 | \( 1 + (-5.68 - 13.8i)T \) |
good | 3 | \( 1 + (-0.686 + 1.18i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.36 + 2.36i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 2.10T + 7T^{2} \) |
| 11 | \( 1 + (2.22 + 3.84i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2.07T + 13T^{2} \) |
| 17 | \( 1 - 3.23T + 17T^{2} \) |
| 19 | \( 1 + (3.16 - 5.48i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.34 + 2.33i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.242 - 0.419i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.01 + 1.75i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.05 + 1.82i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 5.71T + 41T^{2} \) |
| 43 | \( 1 + (4.86 - 8.41i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.04 - 8.73i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.76 - 4.79i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 9.73T + 59T^{2} \) |
| 61 | \( 1 + (2.54 - 4.40i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.51 - 4.35i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.293 - 0.508i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.67 - 4.62i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7.51 + 13.0i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.72 + 11.6i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (7.67 - 13.2i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.46 - 11.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.14177418810001307304030087936, −10.23881988361161908904466731393, −8.658779997665097590390537555123, −8.032739271647126101349530197280, −7.53523602257639497311526679459, −6.01577278969442387218875786428, −5.04354058865445802507977248904, −4.18462583465857475065564905034, −2.70516627340991308170697601187, −1.26374317470044882077244338821,
2.34462898120143514893716456652, 3.41260067063660278001353285088, 4.43742574200985000940153536739, 5.21933684709343775482851966049, 6.90086866968906978392413416651, 7.32484989398196263304306629864, 8.477984907954502456589659616570, 9.790245691968217468651283293153, 10.45080790074299861133526458306, 11.28517836976435529326734520713