L(s) = 1 | + 2-s + (−0.723 − 1.25i)3-s + 4-s + (−0.806 + 1.39i)5-s + (−0.723 − 1.25i)6-s + 0.193·7-s + 8-s + (0.452 − 0.783i)9-s + (−0.806 + 1.39i)10-s + (2.30 − 3.99i)11-s + (−0.723 − 1.25i)12-s + 2.45·13-s + 0.193·14-s + 2.33·15-s + 16-s + 4.36·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.417 − 0.723i)3-s + 0.5·4-s + (−0.360 + 0.624i)5-s + (−0.295 − 0.511i)6-s + 0.0733·7-s + 0.353·8-s + (0.150 − 0.261i)9-s + (−0.255 + 0.441i)10-s + (0.694 − 1.20i)11-s + (−0.208 − 0.361i)12-s + 0.679·13-s + 0.0518·14-s + 0.603·15-s + 0.250·16-s + 1.05·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.639 + 0.768i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.639 + 0.768i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.70913 - 0.800782i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.70913 - 0.800782i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 223 | \( 1 + (-8.13 - 12.5i)T \) |
good | 3 | \( 1 + (0.723 + 1.25i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.806 - 1.39i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 0.193T + 7T^{2} \) |
| 11 | \( 1 + (-2.30 + 3.99i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2.45T + 13T^{2} \) |
| 17 | \( 1 - 4.36T + 17T^{2} \) |
| 19 | \( 1 + (2.77 + 4.81i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.515 + 0.892i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.34 - 2.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.54 - 2.67i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.758 + 1.31i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 4.69T + 41T^{2} \) |
| 43 | \( 1 + (-2.14 - 3.71i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.11 - 7.12i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.03 + 8.72i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 1.81T + 59T^{2} \) |
| 61 | \( 1 + (-7.63 - 13.2i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.17 + 2.03i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.63 + 2.83i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (6.10 - 10.5i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.18 + 2.05i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.347 + 0.602i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.41 - 4.18i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.53 - 11.3i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.37950017123158069485216800807, −10.46124883794828541821697563300, −9.081622061347589309019802649980, −8.012653314982885035572632177944, −6.89750305048962996668517008293, −6.41288033959901760800248591822, −5.43348817312645140576870220399, −3.92388774561365440542662512279, −3.05153765112774247797071377425, −1.18573452102954480722088648914,
1.74558877825490438440912357780, 3.73784686161557308361542955635, 4.39454633284639217069280582574, 5.28083850808441516413068131290, 6.29085870894883260941700515957, 7.52451283990976761958152899924, 8.432021815599058121924539867577, 9.762015115256684485423117572752, 10.30415060137435503112734537454, 11.40098735457763184374884953628