L(s) = 1 | + (−0.526 − 1.64i)3-s + (−0.425 + 1.58i)5-s + (−1.24 − 2.15i)7-s + (−2.44 + 1.73i)9-s − 5.53·11-s + (1.40 + 0.375i)13-s + (2.84 − 0.134i)15-s + (−3.55 + 0.951i)17-s + (−1.73 − 0.463i)19-s + (−2.89 + 3.18i)21-s + (−1.79 − 1.79i)23-s + (1.99 + 1.15i)25-s + (4.15 + 3.11i)27-s + (0.643 − 0.643i)29-s + (−5.86 − 5.86i)31-s + ⋯ |
L(s) = 1 | + (−0.304 − 0.952i)3-s + (−0.190 + 0.709i)5-s + (−0.469 − 0.812i)7-s + (−0.814 + 0.579i)9-s − 1.66·11-s + (0.388 + 0.104i)13-s + (0.733 − 0.0347i)15-s + (−0.861 + 0.230i)17-s + (−0.397 − 0.106i)19-s + (−0.631 + 0.694i)21-s + (−0.373 − 0.373i)23-s + (0.398 + 0.230i)25-s + (0.799 + 0.600i)27-s + (0.119 − 0.119i)29-s + (−1.05 − 1.05i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.952 - 0.305i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 444 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.952 - 0.305i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0257386 + 0.164595i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0257386 + 0.164595i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.526 + 1.64i)T \) |
| 37 | \( 1 + (4.93 - 3.55i)T \) |
good | 5 | \( 1 + (0.425 - 1.58i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (1.24 + 2.15i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 5.53T + 11T^{2} \) |
| 13 | \( 1 + (-1.40 - 0.375i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (3.55 - 0.951i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.73 + 0.463i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (1.79 + 1.79i)T + 23iT^{2} \) |
| 29 | \( 1 + (-0.643 + 0.643i)T - 29iT^{2} \) |
| 31 | \( 1 + (5.86 + 5.86i)T + 31iT^{2} \) |
| 41 | \( 1 + (1.33 + 2.30i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (6.92 - 6.92i)T - 43iT^{2} \) |
| 47 | \( 1 - 7.23iT - 47T^{2} \) |
| 53 | \( 1 + (3.61 + 2.08i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-9.30 + 2.49i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-0.753 + 2.81i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-9.23 + 5.33i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-11.7 + 6.78i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 12.9iT - 73T^{2} \) |
| 79 | \( 1 + (10.2 + 2.73i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (5.13 + 2.96i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (1.69 + 6.33i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (6.50 - 6.50i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85878075833429517560038312836, −9.993125324529847504081457352741, −8.503517480197817374857935153560, −7.69423600469857103339523437033, −6.90233200830832338702130204728, −6.16377278527710837398002094923, −4.90212448909831804274838981086, −3.37259598281023038615766390370, −2.18543110236300763763582524515, −0.099422970585650369998707811719,
2.55091237703202325855394520353, 3.81873492929221013412364570971, 5.12828602781019601456190719034, 5.51720923172170578454746781364, 6.86706201297923721898523119785, 8.453834403413993315963695535941, 8.751374273506030750740318564642, 9.903599319526519105529049115870, 10.62066011539824903105306153013, 11.49202523793516405754335595765