Properties

Label 444.2.w.c.125.4
Level $444$
Weight $2$
Character 444.125
Analytic conductor $3.545$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [444,2,Mod(29,444)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("444.29"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(444, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 444 = 2^{2} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 444.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54535784974\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 125.4
Character \(\chi\) \(=\) 444.125
Dual form 444.2.w.c.341.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.526856 - 1.64998i) q^{3} +(-0.425223 + 1.58695i) q^{5} +(-1.24138 - 2.15014i) q^{7} +(-2.44485 + 1.73860i) q^{9} -5.53300 q^{11} +(1.40068 + 0.375311i) q^{13} +(2.84247 - 0.134487i) q^{15} +(-3.55279 + 0.951967i) q^{17} +(-1.73061 - 0.463714i) q^{19} +(-2.89365 + 3.18107i) q^{21} +(-1.79198 - 1.79198i) q^{23} +(1.99252 + 1.15038i) q^{25} +(4.15673 + 3.11795i) q^{27} +(0.643988 - 0.643988i) q^{29} +(-5.86660 - 5.86660i) q^{31} +(2.91509 + 9.12931i) q^{33} +(3.94004 - 1.05573i) q^{35} +(-4.93235 + 3.55977i) q^{37} +(-0.118701 - 2.50882i) q^{39} +(-1.33247 - 2.30791i) q^{41} +(-6.92135 + 6.92135i) q^{43} +(-1.71947 - 4.61915i) q^{45} +7.23726i q^{47} +(0.417927 - 0.723870i) q^{49} +(3.44253 + 5.36047i) q^{51} +(-3.61769 - 2.08867i) q^{53} +(2.35276 - 8.78061i) q^{55} +(0.146661 + 3.09977i) q^{57} +(9.30754 - 2.49395i) q^{59} +(0.753770 - 2.81311i) q^{61} +(6.77323 + 3.09850i) q^{63} +(-1.19120 + 2.06322i) q^{65} +(9.23364 - 5.33104i) q^{67} +(-2.01262 + 3.90085i) q^{69} +(11.7434 - 6.78003i) q^{71} -12.9564i q^{73} +(0.848334 - 3.89370i) q^{75} +(6.86858 + 11.8967i) q^{77} +(-10.2025 - 2.73375i) q^{79} +(2.95455 - 8.50121i) q^{81} +(-5.13079 - 2.96226i) q^{83} -6.04291i q^{85} +(-1.40185 - 0.723277i) q^{87} +(-1.69688 - 6.33284i) q^{89} +(-0.931811 - 3.47757i) q^{91} +(-6.58891 + 12.7706i) q^{93} +(1.47179 - 2.54921i) q^{95} +(-6.50678 + 6.50678i) q^{97} +(13.5273 - 9.61966i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 10 q^{9} - 24 q^{19} - 18 q^{21} + 32 q^{31} - 44 q^{37} + 62 q^{39} - 4 q^{43} - 54 q^{45} + 24 q^{49} + 14 q^{51} + 20 q^{55} + 34 q^{57} + 36 q^{61} - 36 q^{63} + 12 q^{67} - 50 q^{69} - 20 q^{75}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/444\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(223\) \(409\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.526856 1.64998i −0.304180 0.952615i
\(4\) 0 0
\(5\) −0.425223 + 1.58695i −0.190165 + 0.709707i 0.803300 + 0.595574i \(0.203076\pi\)
−0.993466 + 0.114133i \(0.963591\pi\)
\(6\) 0 0
\(7\) −1.24138 2.15014i −0.469199 0.812677i 0.530181 0.847885i \(-0.322124\pi\)
−0.999380 + 0.0352075i \(0.988791\pi\)
\(8\) 0 0
\(9\) −2.44485 + 1.73860i −0.814949 + 0.579533i
\(10\) 0 0
\(11\) −5.53300 −1.66826 −0.834130 0.551567i \(-0.814030\pi\)
−0.834130 + 0.551567i \(0.814030\pi\)
\(12\) 0 0
\(13\) 1.40068 + 0.375311i 0.388479 + 0.104093i 0.447771 0.894148i \(-0.352218\pi\)
−0.0592927 + 0.998241i \(0.518885\pi\)
\(14\) 0 0
\(15\) 2.84247 0.134487i 0.733922 0.0347245i
\(16\) 0 0
\(17\) −3.55279 + 0.951967i −0.861678 + 0.230886i −0.662486 0.749075i \(-0.730498\pi\)
−0.199192 + 0.979960i \(0.563832\pi\)
\(18\) 0 0
\(19\) −1.73061 0.463714i −0.397028 0.106383i 0.0547801 0.998498i \(-0.482554\pi\)
−0.451808 + 0.892115i \(0.649221\pi\)
\(20\) 0 0
\(21\) −2.89365 + 3.18107i −0.631447 + 0.694166i
\(22\) 0 0
\(23\) −1.79198 1.79198i −0.373655 0.373655i 0.495152 0.868806i \(-0.335112\pi\)
−0.868806 + 0.495152i \(0.835112\pi\)
\(24\) 0 0
\(25\) 1.99252 + 1.15038i 0.398504 + 0.230076i
\(26\) 0 0
\(27\) 4.15673 + 3.11795i 0.799963 + 0.600050i
\(28\) 0 0
\(29\) 0.643988 0.643988i 0.119586 0.119586i −0.644781 0.764367i \(-0.723052\pi\)
0.764367 + 0.644781i \(0.223052\pi\)
\(30\) 0 0
\(31\) −5.86660 5.86660i −1.05367 1.05367i −0.998475 0.0551979i \(-0.982421\pi\)
−0.0551979 0.998475i \(-0.517579\pi\)
\(32\) 0 0
\(33\) 2.91509 + 9.12931i 0.507452 + 1.58921i
\(34\) 0 0
\(35\) 3.94004 1.05573i 0.665988 0.178451i
\(36\) 0 0
\(37\) −4.93235 + 3.55977i −0.810873 + 0.585222i
\(38\) 0 0
\(39\) −0.118701 2.50882i −0.0190074 0.401733i
\(40\) 0 0
\(41\) −1.33247 2.30791i −0.208097 0.360434i 0.743018 0.669271i \(-0.233394\pi\)
−0.951115 + 0.308837i \(0.900060\pi\)
\(42\) 0 0
\(43\) −6.92135 + 6.92135i −1.05550 + 1.05550i −0.0571293 + 0.998367i \(0.518195\pi\)
−0.998367 + 0.0571293i \(0.981805\pi\)
\(44\) 0 0
\(45\) −1.71947 4.61915i −0.256324 0.688582i
\(46\) 0 0
\(47\) 7.23726i 1.05566i 0.849349 + 0.527831i \(0.176995\pi\)
−0.849349 + 0.527831i \(0.823005\pi\)
\(48\) 0 0
\(49\) 0.417927 0.723870i 0.0597038 0.103410i
\(50\) 0 0
\(51\) 3.44253 + 5.36047i 0.482051 + 0.750616i
\(52\) 0 0
\(53\) −3.61769 2.08867i −0.496928 0.286901i 0.230516 0.973069i \(-0.425959\pi\)
−0.727444 + 0.686167i \(0.759292\pi\)
\(54\) 0 0
\(55\) 2.35276 8.78061i 0.317246 1.18398i
\(56\) 0 0
\(57\) 0.146661 + 3.09977i 0.0194258 + 0.410574i
\(58\) 0 0
\(59\) 9.30754 2.49395i 1.21174 0.324684i 0.404294 0.914629i \(-0.367517\pi\)
0.807444 + 0.589945i \(0.200850\pi\)
\(60\) 0 0
\(61\) 0.753770 2.81311i 0.0965104 0.360182i −0.900734 0.434372i \(-0.856970\pi\)
0.997244 + 0.0741900i \(0.0236371\pi\)
\(62\) 0 0
\(63\) 6.77323 + 3.09850i 0.853347 + 0.390374i
\(64\) 0 0
\(65\) −1.19120 + 2.06322i −0.147750 + 0.255911i
\(66\) 0 0
\(67\) 9.23364 5.33104i 1.12807 0.651291i 0.184620 0.982810i \(-0.440895\pi\)
0.943448 + 0.331519i \(0.107561\pi\)
\(68\) 0 0
\(69\) −2.01262 + 3.90085i −0.242290 + 0.469607i
\(70\) 0 0
\(71\) 11.7434 6.78003i 1.39368 0.804642i 0.399960 0.916533i \(-0.369024\pi\)
0.993720 + 0.111891i \(0.0356908\pi\)
\(72\) 0 0
\(73\) 12.9564i 1.51643i −0.652004 0.758216i \(-0.726071\pi\)
0.652004 0.758216i \(-0.273929\pi\)
\(74\) 0 0
\(75\) 0.848334 3.89370i 0.0979571 0.449606i
\(76\) 0 0
\(77\) 6.86858 + 11.8967i 0.782747 + 1.35576i
\(78\) 0 0
\(79\) −10.2025 2.73375i −1.14787 0.307571i −0.365760 0.930709i \(-0.619191\pi\)
−0.782112 + 0.623138i \(0.785857\pi\)
\(80\) 0 0
\(81\) 2.95455 8.50121i 0.328283 0.944579i
\(82\) 0 0
\(83\) −5.13079 2.96226i −0.563177 0.325150i 0.191243 0.981543i \(-0.438748\pi\)
−0.754420 + 0.656392i \(0.772082\pi\)
\(84\) 0 0
\(85\) 6.04291i 0.655445i
\(86\) 0 0
\(87\) −1.40185 0.723277i −0.150295 0.0775434i
\(88\) 0 0
\(89\) −1.69688 6.33284i −0.179869 0.671280i −0.995671 0.0929487i \(-0.970371\pi\)
0.815802 0.578331i \(-0.196296\pi\)
\(90\) 0 0
\(91\) −0.931811 3.47757i −0.0976803 0.364548i
\(92\) 0 0
\(93\) −6.58891 + 12.7706i −0.683238 + 1.32425i
\(94\) 0 0
\(95\) 1.47179 2.54921i 0.151002 0.261543i
\(96\) 0 0
\(97\) −6.50678 + 6.50678i −0.660664 + 0.660664i −0.955536 0.294873i \(-0.904723\pi\)
0.294873 + 0.955536i \(0.404723\pi\)
\(98\) 0 0
\(99\) 13.5273 9.61966i 1.35955 0.966812i
\(100\) 0 0
\(101\) 1.54896 0.154127 0.0770636 0.997026i \(-0.475446\pi\)
0.0770636 + 0.997026i \(0.475446\pi\)
\(102\) 0 0
\(103\) 3.44999 + 3.44999i 0.339937 + 0.339937i 0.856344 0.516406i \(-0.172731\pi\)
−0.516406 + 0.856344i \(0.672731\pi\)
\(104\) 0 0
\(105\) −3.81776 5.94476i −0.372575 0.580149i
\(106\) 0 0
\(107\) 12.2358 7.06434i 1.18288 0.682936i 0.226200 0.974081i \(-0.427370\pi\)
0.956679 + 0.291145i \(0.0940363\pi\)
\(108\) 0 0
\(109\) −0.390674 1.45802i −0.0374198 0.139653i 0.944689 0.327968i \(-0.106364\pi\)
−0.982109 + 0.188316i \(0.939697\pi\)
\(110\) 0 0
\(111\) 8.47217 + 6.26278i 0.804142 + 0.594437i
\(112\) 0 0
\(113\) −2.73122 10.1930i −0.256931 0.958881i −0.967006 0.254755i \(-0.918005\pi\)
0.710074 0.704127i \(-0.248661\pi\)
\(114\) 0 0
\(115\) 3.60579 2.08180i 0.336241 0.194129i
\(116\) 0 0
\(117\) −4.07696 + 1.51764i −0.376915 + 0.140306i
\(118\) 0 0
\(119\) 6.45724 + 6.45724i 0.591934 + 0.591934i
\(120\) 0 0
\(121\) 19.6140 1.78309
\(122\) 0 0
\(123\) −3.10597 + 3.41448i −0.280056 + 0.307873i
\(124\) 0 0
\(125\) −8.48152 + 8.48152i −0.758610 + 0.758610i
\(126\) 0 0
\(127\) −5.69658 + 9.86677i −0.505490 + 0.875534i 0.494490 + 0.869183i \(0.335355\pi\)
−0.999980 + 0.00635095i \(0.997978\pi\)
\(128\) 0 0
\(129\) 15.0666 + 7.77352i 1.32654 + 0.684420i
\(130\) 0 0
\(131\) 2.53558 + 9.46291i 0.221534 + 0.826778i 0.983763 + 0.179470i \(0.0574384\pi\)
−0.762229 + 0.647308i \(0.775895\pi\)
\(132\) 0 0
\(133\) 1.15130 + 4.29669i 0.0998300 + 0.372571i
\(134\) 0 0
\(135\) −6.71558 + 5.27071i −0.577985 + 0.453631i
\(136\) 0 0
\(137\) 1.01452i 0.0866765i −0.999060 0.0433383i \(-0.986201\pi\)
0.999060 0.0433383i \(-0.0137993\pi\)
\(138\) 0 0
\(139\) −3.54499 2.04670i −0.300682 0.173599i 0.342067 0.939676i \(-0.388873\pi\)
−0.642749 + 0.766076i \(0.722206\pi\)
\(140\) 0 0
\(141\) 11.9413 3.81299i 1.00564 0.321112i
\(142\) 0 0
\(143\) −7.74996 2.07659i −0.648084 0.173654i
\(144\) 0 0
\(145\) 0.748140 + 1.29582i 0.0621297 + 0.107612i
\(146\) 0 0
\(147\) −1.41456 0.308194i −0.116671 0.0254194i
\(148\) 0 0
\(149\) 17.2324i 1.41173i 0.708346 + 0.705865i \(0.249441\pi\)
−0.708346 + 0.705865i \(0.750559\pi\)
\(150\) 0 0
\(151\) −10.0609 + 5.80867i −0.818746 + 0.472703i −0.849984 0.526809i \(-0.823388\pi\)
0.0312380 + 0.999512i \(0.490055\pi\)
\(152\) 0 0
\(153\) 7.03094 8.50429i 0.568417 0.687531i
\(154\) 0 0
\(155\) 11.8046 6.81541i 0.948172 0.547427i
\(156\) 0 0
\(157\) −2.44604 + 4.23666i −0.195215 + 0.338122i −0.946971 0.321319i \(-0.895874\pi\)
0.751756 + 0.659441i \(0.229207\pi\)
\(158\) 0 0
\(159\) −1.54026 + 7.06953i −0.122151 + 0.560651i
\(160\) 0 0
\(161\) −1.62848 + 6.07756i −0.128342 + 0.478979i
\(162\) 0 0
\(163\) −21.1321 + 5.66234i −1.65520 + 0.443509i −0.961061 0.276335i \(-0.910880\pi\)
−0.694136 + 0.719844i \(0.744213\pi\)
\(164\) 0 0
\(165\) −15.7274 + 0.744118i −1.22437 + 0.0579295i
\(166\) 0 0
\(167\) 1.57877 5.89204i 0.122169 0.455940i −0.877554 0.479477i \(-0.840826\pi\)
0.999723 + 0.0235376i \(0.00749294\pi\)
\(168\) 0 0
\(169\) −9.43728 5.44862i −0.725945 0.419125i
\(170\) 0 0
\(171\) 5.03728 1.87512i 0.385210 0.143394i
\(172\) 0 0
\(173\) −0.104248 + 0.180563i −0.00792583 + 0.0137279i −0.869961 0.493120i \(-0.835856\pi\)
0.862035 + 0.506848i \(0.169190\pi\)
\(174\) 0 0
\(175\) 5.71227i 0.431807i
\(176\) 0 0
\(177\) −9.01868 14.0433i −0.677886 1.05556i
\(178\) 0 0
\(179\) −9.26755 + 9.26755i −0.692689 + 0.692689i −0.962823 0.270134i \(-0.912932\pi\)
0.270134 + 0.962823i \(0.412932\pi\)
\(180\) 0 0
\(181\) 9.90041 + 17.1480i 0.735892 + 1.27460i 0.954331 + 0.298751i \(0.0965700\pi\)
−0.218440 + 0.975850i \(0.570097\pi\)
\(182\) 0 0
\(183\) −5.03869 + 0.238399i −0.372471 + 0.0176229i
\(184\) 0 0
\(185\) −3.55183 9.34110i −0.261136 0.686771i
\(186\) 0 0
\(187\) 19.6576 5.26723i 1.43750 0.385178i
\(188\) 0 0
\(189\) 1.54393 12.8081i 0.112305 0.931654i
\(190\) 0 0
\(191\) −3.25885 3.25885i −0.235802 0.235802i 0.579307 0.815109i \(-0.303323\pi\)
−0.815109 + 0.579307i \(0.803323\pi\)
\(192\) 0 0
\(193\) 7.31034 7.31034i 0.526210 0.526210i −0.393230 0.919440i \(-0.628642\pi\)
0.919440 + 0.393230i \(0.128642\pi\)
\(194\) 0 0
\(195\) 4.03186 + 0.878436i 0.288728 + 0.0629061i
\(196\) 0 0
\(197\) −17.1897 9.92450i −1.22472 0.707091i −0.258798 0.965931i \(-0.583326\pi\)
−0.965920 + 0.258840i \(0.916660\pi\)
\(198\) 0 0
\(199\) −12.5690 12.5690i −0.890990 0.890990i 0.103626 0.994616i \(-0.466955\pi\)
−0.994616 + 0.103626i \(0.966955\pi\)
\(200\) 0 0
\(201\) −13.6609 12.4266i −0.963565 0.876505i
\(202\) 0 0
\(203\) −2.18410 0.585229i −0.153294 0.0410750i
\(204\) 0 0
\(205\) 4.22914 1.13319i 0.295376 0.0791457i
\(206\) 0 0
\(207\) 7.49667 + 1.26558i 0.521054 + 0.0879642i
\(208\) 0 0
\(209\) 9.57543 + 2.56573i 0.662346 + 0.177475i
\(210\) 0 0
\(211\) 26.9548 1.85564 0.927822 0.373023i \(-0.121679\pi\)
0.927822 + 0.373023i \(0.121679\pi\)
\(212\) 0 0
\(213\) −17.3739 15.8042i −1.19044 1.08288i
\(214\) 0 0
\(215\) −8.04074 13.9270i −0.548374 0.949812i
\(216\) 0 0
\(217\) −5.33132 + 19.8967i −0.361913 + 1.35068i
\(218\) 0 0
\(219\) −21.3778 + 6.82615i −1.44457 + 0.461268i
\(220\) 0 0
\(221\) −5.33360 −0.358777
\(222\) 0 0
\(223\) 3.34158 0.223769 0.111884 0.993721i \(-0.464311\pi\)
0.111884 + 0.993721i \(0.464311\pi\)
\(224\) 0 0
\(225\) −6.87146 + 0.651686i −0.458097 + 0.0434457i
\(226\) 0 0
\(227\) −7.68219 + 28.6703i −0.509885 + 1.90292i −0.0883919 + 0.996086i \(0.528173\pi\)
−0.421493 + 0.906832i \(0.638494\pi\)
\(228\) 0 0
\(229\) 8.61118 + 14.9150i 0.569043 + 0.985611i 0.996661 + 0.0816514i \(0.0260194\pi\)
−0.427618 + 0.903959i \(0.640647\pi\)
\(230\) 0 0
\(231\) 16.0106 17.6008i 1.05342 1.15805i
\(232\) 0 0
\(233\) −7.22299 −0.473194 −0.236597 0.971608i \(-0.576032\pi\)
−0.236597 + 0.971608i \(0.576032\pi\)
\(234\) 0 0
\(235\) −11.4852 3.07745i −0.749211 0.200750i
\(236\) 0 0
\(237\) 0.864618 + 18.2742i 0.0561629 + 1.18704i
\(238\) 0 0
\(239\) −26.2747 + 7.04028i −1.69957 + 0.455398i −0.972831 0.231518i \(-0.925631\pi\)
−0.726737 + 0.686916i \(0.758964\pi\)
\(240\) 0 0
\(241\) −4.08602 1.09485i −0.263204 0.0705252i 0.124804 0.992181i \(-0.460170\pi\)
−0.388007 + 0.921656i \(0.626837\pi\)
\(242\) 0 0
\(243\) −15.5834 0.396024i −0.999677 0.0254050i
\(244\) 0 0
\(245\) 0.971037 + 0.971037i 0.0620373 + 0.0620373i
\(246\) 0 0
\(247\) −2.24999 1.29903i −0.143163 0.0826553i
\(248\) 0 0
\(249\) −2.18448 + 10.0264i −0.138436 + 0.635395i
\(250\) 0 0
\(251\) 5.48883 5.48883i 0.346452 0.346452i −0.512334 0.858786i \(-0.671219\pi\)
0.858786 + 0.512334i \(0.171219\pi\)
\(252\) 0 0
\(253\) 9.91504 + 9.91504i 0.623353 + 0.623353i
\(254\) 0 0
\(255\) −9.97066 + 3.18374i −0.624387 + 0.199374i
\(256\) 0 0
\(257\) 19.5592 5.24088i 1.22007 0.326917i 0.409365 0.912371i \(-0.365750\pi\)
0.810706 + 0.585454i \(0.199084\pi\)
\(258\) 0 0
\(259\) 13.7769 + 6.18621i 0.856058 + 0.384393i
\(260\) 0 0
\(261\) −0.454815 + 2.69409i −0.0281523 + 0.166760i
\(262\) 0 0
\(263\) −10.5847 18.3332i −0.652679 1.13047i −0.982470 0.186420i \(-0.940312\pi\)
0.329791 0.944054i \(-0.393022\pi\)
\(264\) 0 0
\(265\) 4.85295 4.85295i 0.298115 0.298115i
\(266\) 0 0
\(267\) −9.55503 + 6.13631i −0.584759 + 0.375536i
\(268\) 0 0
\(269\) 0.480089i 0.0292716i 0.999893 + 0.0146358i \(0.00465888\pi\)
−0.999893 + 0.0146358i \(0.995341\pi\)
\(270\) 0 0
\(271\) 2.63631 4.56622i 0.160144 0.277378i −0.774776 0.632236i \(-0.782137\pi\)
0.934920 + 0.354858i \(0.115471\pi\)
\(272\) 0 0
\(273\) −5.24697 + 3.36964i −0.317561 + 0.203940i
\(274\) 0 0
\(275\) −11.0246 6.36506i −0.664809 0.383828i
\(276\) 0 0
\(277\) 1.84071 6.86962i 0.110597 0.412755i −0.888322 0.459220i \(-0.848129\pi\)
0.998920 + 0.0464648i \(0.0147955\pi\)
\(278\) 0 0
\(279\) 24.5426 + 4.14328i 1.46933 + 0.248051i
\(280\) 0 0
\(281\) 23.1370 6.19953i 1.38024 0.369833i 0.509029 0.860749i \(-0.330005\pi\)
0.871207 + 0.490916i \(0.163338\pi\)
\(282\) 0 0
\(283\) −7.68728 + 28.6893i −0.456961 + 1.70540i 0.225296 + 0.974290i \(0.427665\pi\)
−0.682257 + 0.731112i \(0.739001\pi\)
\(284\) 0 0
\(285\) −4.98155 1.08535i −0.295082 0.0642905i
\(286\) 0 0
\(287\) −3.30822 + 5.73000i −0.195278 + 0.338231i
\(288\) 0 0
\(289\) −3.00636 + 1.73572i −0.176845 + 0.102101i
\(290\) 0 0
\(291\) 14.1642 + 7.30790i 0.830319 + 0.428397i
\(292\) 0 0
\(293\) −26.6034 + 15.3595i −1.55419 + 0.897312i −0.556396 + 0.830917i \(0.687816\pi\)
−0.997793 + 0.0663946i \(0.978850\pi\)
\(294\) 0 0
\(295\) 15.8311i 0.921723i
\(296\) 0 0
\(297\) −22.9992 17.2516i −1.33455 1.00104i
\(298\) 0 0
\(299\) −1.83744 3.18255i −0.106262 0.184051i
\(300\) 0 0
\(301\) 23.4739 + 6.28982i 1.35302 + 0.362539i
\(302\) 0 0
\(303\) −0.816078 2.55575i −0.0468824 0.146824i
\(304\) 0 0
\(305\) 4.14375 + 2.39240i 0.237271 + 0.136988i
\(306\) 0 0
\(307\) 2.45030i 0.139846i 0.997552 + 0.0699231i \(0.0222754\pi\)
−0.997552 + 0.0699231i \(0.977725\pi\)
\(308\) 0 0
\(309\) 3.87475 7.51004i 0.220427 0.427231i
\(310\) 0 0
\(311\) −6.41896 23.9559i −0.363986 1.35841i −0.868790 0.495180i \(-0.835102\pi\)
0.504804 0.863234i \(-0.331565\pi\)
\(312\) 0 0
\(313\) 4.73126 + 17.6573i 0.267426 + 0.998049i 0.960748 + 0.277421i \(0.0894797\pi\)
−0.693322 + 0.720628i \(0.743854\pi\)
\(314\) 0 0
\(315\) −7.79730 + 9.43125i −0.439328 + 0.531391i
\(316\) 0 0
\(317\) 15.2556 26.4235i 0.856842 1.48409i −0.0180831 0.999836i \(-0.505756\pi\)
0.874925 0.484258i \(-0.160910\pi\)
\(318\) 0 0
\(319\) −3.56318 + 3.56318i −0.199500 + 0.199500i
\(320\) 0 0
\(321\) −18.1025 16.4669i −1.01038 0.919092i
\(322\) 0 0
\(323\) 6.58992 0.366673
\(324\) 0 0
\(325\) 2.35913 + 2.35913i 0.130861 + 0.130861i
\(326\) 0 0
\(327\) −2.19986 + 1.41277i −0.121653 + 0.0781262i
\(328\) 0 0
\(329\) 15.5611 8.98422i 0.857913 0.495316i
\(330\) 0 0
\(331\) −7.92800 29.5877i −0.435762 1.62629i −0.739236 0.673447i \(-0.764813\pi\)
0.303474 0.952840i \(-0.401854\pi\)
\(332\) 0 0
\(333\) 5.86983 17.2785i 0.321665 0.946854i
\(334\) 0 0
\(335\) 4.53376 + 16.9202i 0.247706 + 0.924451i
\(336\) 0 0
\(337\) 9.08801 5.24696i 0.495055 0.285820i −0.231614 0.972808i \(-0.574401\pi\)
0.726669 + 0.686987i \(0.241067\pi\)
\(338\) 0 0
\(339\) −15.3793 + 9.87671i −0.835291 + 0.536429i
\(340\) 0 0
\(341\) 32.4599 + 32.4599i 1.75780 + 1.75780i
\(342\) 0 0
\(343\) −19.4546 −1.05045
\(344\) 0 0
\(345\) −5.33466 4.85266i −0.287208 0.261258i
\(346\) 0 0
\(347\) −12.4634 + 12.4634i −0.669070 + 0.669070i −0.957501 0.288430i \(-0.906867\pi\)
0.288430 + 0.957501i \(0.406867\pi\)
\(348\) 0 0
\(349\) −0.783243 + 1.35662i −0.0419260 + 0.0726180i −0.886227 0.463251i \(-0.846683\pi\)
0.844301 + 0.535869i \(0.180016\pi\)
\(350\) 0 0
\(351\) 4.65205 + 5.92732i 0.248308 + 0.316377i
\(352\) 0 0
\(353\) −2.91033 10.8615i −0.154901 0.578099i −0.999114 0.0420905i \(-0.986598\pi\)
0.844213 0.536008i \(-0.180068\pi\)
\(354\) 0 0
\(355\) 5.76605 + 21.5192i 0.306030 + 1.14212i
\(356\) 0 0
\(357\) 7.25227 14.0563i 0.383831 0.743940i
\(358\) 0 0
\(359\) 28.1419i 1.48527i 0.669695 + 0.742636i \(0.266425\pi\)
−0.669695 + 0.742636i \(0.733575\pi\)
\(360\) 0 0
\(361\) −13.6745 7.89499i −0.719712 0.415526i
\(362\) 0 0
\(363\) −10.3338 32.3627i −0.542382 1.69860i
\(364\) 0 0
\(365\) 20.5612 + 5.50936i 1.07622 + 0.288373i
\(366\) 0 0
\(367\) 2.41872 + 4.18935i 0.126256 + 0.218683i 0.922223 0.386658i \(-0.126370\pi\)
−0.795967 + 0.605340i \(0.793037\pi\)
\(368\) 0 0
\(369\) 7.27021 + 3.32585i 0.378472 + 0.173137i
\(370\) 0 0
\(371\) 10.3714i 0.538456i
\(372\) 0 0
\(373\) 6.86406 3.96297i 0.355407 0.205195i −0.311657 0.950195i \(-0.600884\pi\)
0.667064 + 0.745000i \(0.267551\pi\)
\(374\) 0 0
\(375\) 18.4628 + 9.52578i 0.953417 + 0.491909i
\(376\) 0 0
\(377\) 1.14372 0.660325i 0.0589044 0.0340085i
\(378\) 0 0
\(379\) 6.49086 11.2425i 0.333413 0.577488i −0.649766 0.760135i \(-0.725133\pi\)
0.983179 + 0.182646i \(0.0584663\pi\)
\(380\) 0 0
\(381\) 19.2812 + 4.20087i 0.987807 + 0.215217i
\(382\) 0 0
\(383\) −4.18684 + 15.6255i −0.213938 + 0.798426i 0.772600 + 0.634893i \(0.218956\pi\)
−0.986538 + 0.163533i \(0.947711\pi\)
\(384\) 0 0
\(385\) −21.8002 + 5.84135i −1.11104 + 0.297703i
\(386\) 0 0
\(387\) 4.88819 28.9551i 0.248481 1.47187i
\(388\) 0 0
\(389\) −4.34679 + 16.2224i −0.220391 + 0.822510i 0.763808 + 0.645444i \(0.223327\pi\)
−0.984199 + 0.177067i \(0.943339\pi\)
\(390\) 0 0
\(391\) 8.07245 + 4.66063i 0.408241 + 0.235698i
\(392\) 0 0
\(393\) 14.2777 9.16923i 0.720214 0.462526i
\(394\) 0 0
\(395\) 8.67668 15.0284i 0.436571 0.756163i
\(396\) 0 0
\(397\) 16.5459i 0.830413i 0.909727 + 0.415206i \(0.136291\pi\)
−0.909727 + 0.415206i \(0.863709\pi\)
\(398\) 0 0
\(399\) 6.48288 4.16335i 0.324550 0.208428i
\(400\) 0 0
\(401\) −0.568565 + 0.568565i −0.0283928 + 0.0283928i −0.721161 0.692768i \(-0.756391\pi\)
0.692768 + 0.721161i \(0.256391\pi\)
\(402\) 0 0
\(403\) −6.01543 10.4190i −0.299650 0.519009i
\(404\) 0 0
\(405\) 12.2347 + 8.30364i 0.607947 + 0.412611i
\(406\) 0 0
\(407\) 27.2907 19.6962i 1.35275 0.976303i
\(408\) 0 0
\(409\) 28.6941 7.68856i 1.41883 0.380175i 0.533763 0.845634i \(-0.320778\pi\)
0.885069 + 0.465460i \(0.154111\pi\)
\(410\) 0 0
\(411\) −1.67394 + 0.534507i −0.0825693 + 0.0263653i
\(412\) 0 0
\(413\) −16.9166 16.9166i −0.832410 0.832410i
\(414\) 0 0
\(415\) 6.88270 6.88270i 0.337858 0.337858i
\(416\) 0 0
\(417\) −1.50931 + 6.92747i −0.0739114 + 0.339240i
\(418\) 0 0
\(419\) −8.84354 5.10582i −0.432035 0.249436i 0.268178 0.963369i \(-0.413578\pi\)
−0.700213 + 0.713934i \(0.746912\pi\)
\(420\) 0 0
\(421\) −21.4079 21.4079i −1.04336 1.04336i −0.999017 0.0443398i \(-0.985882\pi\)
−0.0443398 0.999017i \(-0.514118\pi\)
\(422\) 0 0
\(423\) −12.5827 17.6940i −0.611791 0.860311i
\(424\) 0 0
\(425\) −8.17413 2.19025i −0.396504 0.106243i
\(426\) 0 0
\(427\) −6.98430 + 1.87144i −0.337994 + 0.0905652i
\(428\) 0 0
\(429\) 0.656775 + 13.8813i 0.0317094 + 0.670196i
\(430\) 0 0
\(431\) 26.0516 + 6.98051i 1.25486 + 0.336240i 0.824213 0.566280i \(-0.191618\pi\)
0.430650 + 0.902519i \(0.358284\pi\)
\(432\) 0 0
\(433\) 4.62604 0.222313 0.111157 0.993803i \(-0.464544\pi\)
0.111157 + 0.993803i \(0.464544\pi\)
\(434\) 0 0
\(435\) 1.74391 1.91712i 0.0836139 0.0919190i
\(436\) 0 0
\(437\) 2.27025 + 3.93219i 0.108601 + 0.188102i
\(438\) 0 0
\(439\) 2.24373 8.37373i 0.107088 0.399656i −0.891486 0.453048i \(-0.850337\pi\)
0.998574 + 0.0533918i \(0.0170032\pi\)
\(440\) 0 0
\(441\) 0.236753 + 2.49636i 0.0112740 + 0.118874i
\(442\) 0 0
\(443\) −8.56590 −0.406978 −0.203489 0.979077i \(-0.565228\pi\)
−0.203489 + 0.979077i \(0.565228\pi\)
\(444\) 0 0
\(445\) 10.7715 0.510617
\(446\) 0 0
\(447\) 28.4330 9.07896i 1.34483 0.429420i
\(448\) 0 0
\(449\) 7.83122 29.2265i 0.369578 1.37928i −0.491529 0.870861i \(-0.663562\pi\)
0.861107 0.508423i \(-0.169771\pi\)
\(450\) 0 0
\(451\) 7.37255 + 12.7696i 0.347160 + 0.601299i
\(452\) 0 0
\(453\) 14.8848 + 13.5399i 0.699350 + 0.636162i
\(454\) 0 0
\(455\) 5.91496 0.277298
\(456\) 0 0
\(457\) 17.2510 + 4.62240i 0.806969 + 0.216227i 0.638641 0.769504i \(-0.279497\pi\)
0.168328 + 0.985731i \(0.446163\pi\)
\(458\) 0 0
\(459\) −17.7362 7.12035i −0.827853 0.332349i
\(460\) 0 0
\(461\) −23.2177 + 6.22115i −1.08135 + 0.289748i −0.755151 0.655551i \(-0.772436\pi\)
−0.326204 + 0.945299i \(0.605770\pi\)
\(462\) 0 0
\(463\) −1.37252 0.367764i −0.0637862 0.0170915i 0.226785 0.973945i \(-0.427179\pi\)
−0.290571 + 0.956853i \(0.593845\pi\)
\(464\) 0 0
\(465\) −17.4646 15.8866i −0.809902 0.736726i
\(466\) 0 0
\(467\) 19.5181 + 19.5181i 0.903190 + 0.903190i 0.995711 0.0925203i \(-0.0294923\pi\)
−0.0925203 + 0.995711i \(0.529492\pi\)
\(468\) 0 0
\(469\) −22.9250 13.2358i −1.05858 0.611170i
\(470\) 0 0
\(471\) 8.27909 + 1.80380i 0.381481 + 0.0831145i
\(472\) 0 0
\(473\) 38.2958 38.2958i 1.76084 1.76084i
\(474\) 0 0
\(475\) −2.91482 2.91482i −0.133741 0.133741i
\(476\) 0 0
\(477\) 12.4761 1.18322i 0.571240 0.0541761i
\(478\) 0 0
\(479\) −0.375141 + 0.100519i −0.0171406 + 0.00459281i −0.267379 0.963591i \(-0.586158\pi\)
0.250239 + 0.968184i \(0.419491\pi\)
\(480\) 0 0
\(481\) −8.24466 + 3.13493i −0.375924 + 0.142940i
\(482\) 0 0
\(483\) 10.8858 0.515047i 0.495321 0.0234354i
\(484\) 0 0
\(485\) −7.55913 13.0928i −0.343242 0.594513i
\(486\) 0 0
\(487\) −10.5633 + 10.5633i −0.478670 + 0.478670i −0.904706 0.426036i \(-0.859910\pi\)
0.426036 + 0.904706i \(0.359910\pi\)
\(488\) 0 0
\(489\) 20.4763 + 31.8843i 0.925971 + 1.44186i
\(490\) 0 0
\(491\) 7.71538i 0.348190i −0.984729 0.174095i \(-0.944300\pi\)
0.984729 0.174095i \(-0.0557000\pi\)
\(492\) 0 0
\(493\) −1.67490 + 2.90101i −0.0754336 + 0.130655i
\(494\) 0 0
\(495\) 9.51382 + 25.5577i 0.427615 + 1.14873i
\(496\) 0 0
\(497\) −29.1561 16.8333i −1.30783 0.755075i
\(498\) 0 0
\(499\) 10.3334 38.5646i 0.462585 1.72639i −0.202189 0.979346i \(-0.564806\pi\)
0.664774 0.747044i \(-0.268528\pi\)
\(500\) 0 0
\(501\) −10.5535 + 0.499325i −0.471496 + 0.0223082i
\(502\) 0 0
\(503\) −33.5910 + 9.00069i −1.49775 + 0.401321i −0.912346 0.409420i \(-0.865731\pi\)
−0.585405 + 0.810741i \(0.699064\pi\)
\(504\) 0 0
\(505\) −0.658653 + 2.45813i −0.0293097 + 0.109385i
\(506\) 0 0
\(507\) −4.01801 + 18.4419i −0.178446 + 0.819035i
\(508\) 0 0
\(509\) 3.36694 5.83171i 0.149237 0.258486i −0.781709 0.623644i \(-0.785652\pi\)
0.930946 + 0.365158i \(0.118985\pi\)
\(510\) 0 0
\(511\) −27.8581 + 16.0839i −1.23237 + 0.711509i
\(512\) 0 0
\(513\) −5.74782 7.32347i −0.253772 0.323339i
\(514\) 0 0
\(515\) −6.94198 + 4.00795i −0.305900 + 0.176612i
\(516\) 0 0
\(517\) 40.0437i 1.76112i
\(518\) 0 0
\(519\) 0.352848 + 0.0768763i 0.0154883 + 0.00337449i
\(520\) 0 0
\(521\) 14.9951 + 25.9722i 0.656946 + 1.13786i 0.981402 + 0.191964i \(0.0614855\pi\)
−0.324456 + 0.945901i \(0.605181\pi\)
\(522\) 0 0
\(523\) 4.65390 + 1.24701i 0.203501 + 0.0545279i 0.359130 0.933288i \(-0.383074\pi\)
−0.155629 + 0.987816i \(0.549740\pi\)
\(524\) 0 0
\(525\) −9.42511 + 3.00954i −0.411346 + 0.131347i
\(526\) 0 0
\(527\) 26.4276 + 15.2580i 1.15121 + 0.664649i
\(528\) 0 0
\(529\) 16.5776i 0.720765i
\(530\) 0 0
\(531\) −18.4195 + 22.2794i −0.799339 + 0.966843i
\(532\) 0 0
\(533\) −1.00018 3.73273i −0.0433227 0.161682i
\(534\) 0 0
\(535\) 6.00784 + 22.4216i 0.259741 + 0.969368i
\(536\) 0 0
\(537\) 20.1739 + 10.4086i 0.870568 + 0.449163i
\(538\) 0 0
\(539\) −2.31239 + 4.00517i −0.0996016 + 0.172515i
\(540\) 0 0
\(541\) −0.778680 + 0.778680i −0.0334781 + 0.0334781i −0.723648 0.690170i \(-0.757536\pi\)
0.690170 + 0.723648i \(0.257536\pi\)
\(542\) 0 0
\(543\) 23.0777 25.3700i 0.990360 1.08873i
\(544\) 0 0
\(545\) 2.47993 0.106228
\(546\) 0 0
\(547\) −7.57357 7.57357i −0.323822 0.323822i 0.526409 0.850231i \(-0.323538\pi\)
−0.850231 + 0.526409i \(0.823538\pi\)
\(548\) 0 0
\(549\) 3.04801 + 8.18812i 0.130086 + 0.349461i
\(550\) 0 0
\(551\) −1.41312 + 0.815863i −0.0602007 + 0.0347569i
\(552\) 0 0
\(553\) 6.78728 + 25.3305i 0.288624 + 1.07716i
\(554\) 0 0
\(555\) −13.5413 + 10.7819i −0.574796 + 0.457664i
\(556\) 0 0
\(557\) 1.67402 + 6.24751i 0.0709303 + 0.264716i 0.992280 0.124020i \(-0.0395787\pi\)
−0.921349 + 0.388735i \(0.872912\pi\)
\(558\) 0 0
\(559\) −12.2923 + 7.09694i −0.519907 + 0.300168i
\(560\) 0 0
\(561\) −19.0475 29.6595i −0.804186 1.25222i
\(562\) 0 0
\(563\) 9.50717 + 9.50717i 0.400679 + 0.400679i 0.878472 0.477793i \(-0.158563\pi\)
−0.477793 + 0.878472i \(0.658563\pi\)
\(564\) 0 0
\(565\) 17.3373 0.729384
\(566\) 0 0
\(567\) −21.9465 + 4.20058i −0.921668 + 0.176408i
\(568\) 0 0
\(569\) 3.48152 3.48152i 0.145953 0.145953i −0.630354 0.776307i \(-0.717090\pi\)
0.776307 + 0.630354i \(0.217090\pi\)
\(570\) 0 0
\(571\) 7.53745 13.0552i 0.315432 0.546345i −0.664097 0.747647i \(-0.731184\pi\)
0.979529 + 0.201301i \(0.0645171\pi\)
\(572\) 0 0
\(573\) −3.66009 + 7.09397i −0.152902 + 0.296355i
\(574\) 0 0
\(575\) −1.50910 5.63203i −0.0629338 0.234872i
\(576\) 0 0
\(577\) −7.88716 29.4353i −0.328347 1.22541i −0.910905 0.412617i \(-0.864615\pi\)
0.582558 0.812789i \(-0.302052\pi\)
\(578\) 0 0
\(579\) −15.9134 8.21040i −0.661338 0.341213i
\(580\) 0 0
\(581\) 14.7092i 0.610241i
\(582\) 0 0
\(583\) 20.0167 + 11.5566i 0.829005 + 0.478627i
\(584\) 0 0
\(585\) −0.674810 7.11529i −0.0279000 0.294181i
\(586\) 0 0
\(587\) −27.3162 7.31936i −1.12746 0.302102i −0.353562 0.935411i \(-0.615030\pi\)
−0.773899 + 0.633309i \(0.781696\pi\)
\(588\) 0 0
\(589\) 7.43235 + 12.8732i 0.306245 + 0.530431i
\(590\) 0 0
\(591\) −7.31869 + 33.5915i −0.301051 + 1.38177i
\(592\) 0 0
\(593\) 1.36215i 0.0559367i −0.999609 0.0279683i \(-0.991096\pi\)
0.999609 0.0279683i \(-0.00890376\pi\)
\(594\) 0 0
\(595\) −12.9931 + 7.50158i −0.532666 + 0.307535i
\(596\) 0 0
\(597\) −14.1165 + 27.3605i −0.577748 + 1.11979i
\(598\) 0 0
\(599\) 2.89762 1.67294i 0.118393 0.0683545i −0.439634 0.898177i \(-0.644892\pi\)
0.558027 + 0.829823i \(0.311558\pi\)
\(600\) 0 0
\(601\) −13.8410 + 23.9733i −0.564586 + 0.977891i 0.432502 + 0.901633i \(0.357631\pi\)
−0.997088 + 0.0762586i \(0.975703\pi\)
\(602\) 0 0
\(603\) −13.3063 + 29.0872i −0.541874 + 1.18452i
\(604\) 0 0
\(605\) −8.34034 + 31.1266i −0.339083 + 1.26547i
\(606\) 0 0
\(607\) 11.3079 3.02994i 0.458973 0.122982i −0.0219217 0.999760i \(-0.506978\pi\)
0.480895 + 0.876778i \(0.340312\pi\)
\(608\) 0 0
\(609\) 0.185093 + 3.91205i 0.00750035 + 0.158524i
\(610\) 0 0
\(611\) −2.71622 + 10.1371i −0.109887 + 0.410102i
\(612\) 0 0
\(613\) 1.82741 + 1.05506i 0.0738085 + 0.0426134i 0.536450 0.843932i \(-0.319765\pi\)
−0.462642 + 0.886545i \(0.653098\pi\)
\(614\) 0 0
\(615\) −4.09789 6.38095i −0.165243 0.257305i
\(616\) 0 0
\(617\) 5.53931 9.59437i 0.223004 0.386255i −0.732714 0.680536i \(-0.761747\pi\)
0.955719 + 0.294281i \(0.0950802\pi\)
\(618\) 0 0
\(619\) 25.1797i 1.01206i −0.862516 0.506030i \(-0.831113\pi\)
0.862516 0.506030i \(-0.168887\pi\)
\(620\) 0 0
\(621\) −1.86148 13.0361i −0.0746985 0.523121i
\(622\) 0 0
\(623\) −11.5100 + 11.5100i −0.461140 + 0.461140i
\(624\) 0 0
\(625\) −4.10133 7.10371i −0.164053 0.284148i
\(626\) 0 0
\(627\) −0.811476 17.1510i −0.0324072 0.684945i
\(628\) 0 0
\(629\) 14.1348 17.3425i 0.563592 0.691492i
\(630\) 0 0
\(631\) −43.2003 + 11.5755i −1.71978 + 0.460813i −0.977787 0.209600i \(-0.932784\pi\)
−0.741989 + 0.670413i \(0.766117\pi\)
\(632\) 0 0
\(633\) −14.2013 44.4748i −0.564450 1.76771i
\(634\) 0 0
\(635\) −13.2358 13.2358i −0.525246 0.525246i
\(636\) 0 0
\(637\) 0.857058 0.857058i 0.0339579 0.0339579i
\(638\) 0 0
\(639\) −16.9230 + 36.9931i −0.669462 + 1.46343i
\(640\) 0 0
\(641\) 13.1965 + 7.61901i 0.521231 + 0.300933i 0.737438 0.675415i \(-0.236035\pi\)
−0.216207 + 0.976347i \(0.569369\pi\)
\(642\) 0 0
\(643\) 12.1271 + 12.1271i 0.478245 + 0.478245i 0.904570 0.426325i \(-0.140192\pi\)
−0.426325 + 0.904570i \(0.640192\pi\)
\(644\) 0 0
\(645\) −18.7429 + 20.6045i −0.738000 + 0.811303i
\(646\) 0 0
\(647\) 26.8294 + 7.18892i 1.05477 + 0.282625i 0.744223 0.667932i \(-0.232820\pi\)
0.310550 + 0.950557i \(0.399487\pi\)
\(648\) 0 0
\(649\) −51.4986 + 13.7990i −2.02150 + 0.541658i
\(650\) 0 0
\(651\) 35.6380 1.68616i 1.39676 0.0660859i
\(652\) 0 0
\(653\) −34.7723 9.31720i −1.36074 0.364610i −0.496655 0.867948i \(-0.665438\pi\)
−0.864090 + 0.503338i \(0.832105\pi\)
\(654\) 0 0
\(655\) −16.0954 −0.628898
\(656\) 0 0
\(657\) 22.5260 + 31.6764i 0.878822 + 1.23581i
\(658\) 0 0
\(659\) −22.9807 39.8038i −0.895202 1.55054i −0.833554 0.552438i \(-0.813697\pi\)
−0.0616487 0.998098i \(-0.519636\pi\)
\(660\) 0 0
\(661\) 11.5791 43.2137i 0.450374 1.68082i −0.250969 0.967995i \(-0.580749\pi\)
0.701343 0.712824i \(-0.252584\pi\)
\(662\) 0 0
\(663\) 2.81004 + 8.80032i 0.109133 + 0.341776i
\(664\) 0 0
\(665\) −7.30821 −0.283400
\(666\) 0 0
\(667\) −2.30803 −0.0893674
\(668\) 0 0
\(669\) −1.76053 5.51353i −0.0680661 0.213166i
\(670\) 0 0
\(671\) −4.17061 + 15.5649i −0.161004 + 0.600877i
\(672\) 0 0
\(673\) −6.32887 10.9619i −0.243960 0.422551i 0.717879 0.696168i \(-0.245113\pi\)
−0.961839 + 0.273617i \(0.911780\pi\)
\(674\) 0 0
\(675\) 4.69553 + 10.9944i 0.180731 + 0.423175i
\(676\) 0 0
\(677\) −35.1546 −1.35110 −0.675550 0.737314i \(-0.736094\pi\)
−0.675550 + 0.737314i \(0.736094\pi\)
\(678\) 0 0
\(679\) 22.0679 + 5.91308i 0.846889 + 0.226923i
\(680\) 0 0
\(681\) 51.3528 2.42969i 1.96784 0.0931058i
\(682\) 0 0
\(683\) −30.7910 + 8.25042i −1.17818 + 0.315693i −0.794206 0.607649i \(-0.792113\pi\)
−0.383978 + 0.923342i \(0.625446\pi\)
\(684\) 0 0
\(685\) 1.61000 + 0.431398i 0.0615149 + 0.0164829i
\(686\) 0 0
\(687\) 20.0726 22.0663i 0.765816 0.841882i
\(688\) 0 0
\(689\) −4.28332 4.28332i −0.163182 0.163182i
\(690\) 0 0
\(691\) 11.9909 + 6.92293i 0.456154 + 0.263361i 0.710426 0.703772i \(-0.248502\pi\)
−0.254272 + 0.967133i \(0.581836\pi\)
\(692\) 0 0
\(693\) −37.4762 17.1440i −1.42361 0.651245i
\(694\) 0 0
\(695\) 4.75544 4.75544i 0.180384 0.180384i
\(696\) 0 0
\(697\) 6.93104 + 6.93104i 0.262532 + 0.262532i
\(698\) 0 0
\(699\) 3.80547 + 11.9178i 0.143936 + 0.450771i
\(700\) 0 0
\(701\) 32.4256 8.68841i 1.22470 0.328157i 0.412185 0.911100i \(-0.364766\pi\)
0.812513 + 0.582943i \(0.198099\pi\)
\(702\) 0 0
\(703\) 10.1867 3.87335i 0.384197 0.146086i
\(704\) 0 0
\(705\) 0.973319 + 20.5717i 0.0366573 + 0.774774i
\(706\) 0 0
\(707\) −1.92285 3.33048i −0.0723164 0.125256i
\(708\) 0 0
\(709\) −0.0989368 + 0.0989368i −0.00371565 + 0.00371565i −0.708962 0.705247i \(-0.750836\pi\)
0.705247 + 0.708962i \(0.250836\pi\)
\(710\) 0 0
\(711\) 29.6965 11.0545i 1.11370 0.414575i
\(712\) 0 0
\(713\) 21.0257i 0.787420i
\(714\) 0 0
\(715\) 6.59092 11.4158i 0.246486 0.426927i
\(716\) 0 0
\(717\) 25.4593 + 39.6434i 0.950793 + 1.48051i
\(718\) 0 0
\(719\) −11.3925 6.57748i −0.424870 0.245299i 0.272289 0.962216i \(-0.412219\pi\)
−0.697159 + 0.716917i \(0.745553\pi\)
\(720\) 0 0
\(721\) 3.13520 11.7007i 0.116761 0.435758i
\(722\) 0 0
\(723\) 0.346272 + 7.31866i 0.0128780 + 0.272184i
\(724\) 0 0
\(725\) 2.02399 0.542327i 0.0751692 0.0201415i
\(726\) 0 0
\(727\) 1.22263 4.56293i 0.0453450 0.169230i −0.939540 0.342439i \(-0.888747\pi\)
0.984885 + 0.173209i \(0.0554137\pi\)
\(728\) 0 0
\(729\) 7.55678 + 25.9209i 0.279881 + 0.960035i
\(730\) 0 0
\(731\) 18.0012 31.1790i 0.665798 1.15320i
\(732\) 0 0
\(733\) 4.95739 2.86215i 0.183105 0.105716i −0.405646 0.914030i \(-0.632953\pi\)
0.588751 + 0.808315i \(0.299620\pi\)
\(734\) 0 0
\(735\) 1.09059 2.11378i 0.0402271 0.0779681i
\(736\) 0 0
\(737\) −51.0897 + 29.4966i −1.88191 + 1.08652i
\(738\) 0 0
\(739\) 43.1595i 1.58765i −0.608147 0.793824i \(-0.708087\pi\)
0.608147 0.793824i \(-0.291913\pi\)
\(740\) 0 0
\(741\) −0.957952 + 4.39683i −0.0351913 + 0.161522i
\(742\) 0 0
\(743\) −14.8034 25.6403i −0.543086 0.940652i −0.998725 0.0504876i \(-0.983922\pi\)
0.455639 0.890165i \(-0.349411\pi\)
\(744\) 0 0
\(745\) −27.3469 7.32759i −1.00191 0.268462i
\(746\) 0 0
\(747\) 17.6942 1.67811i 0.647396 0.0613987i
\(748\) 0 0
\(749\) −30.3787 17.5391i −1.11001 0.640866i
\(750\) 0 0
\(751\) 22.0382i 0.804187i −0.915599 0.402093i \(-0.868283\pi\)
0.915599 0.402093i \(-0.131717\pi\)
\(752\) 0 0
\(753\) −11.9483 6.16462i −0.435419 0.224651i
\(754\) 0 0
\(755\) −4.93996 18.4362i −0.179784 0.670961i
\(756\) 0 0
\(757\) −4.62210 17.2499i −0.167993 0.626958i −0.997639 0.0686692i \(-0.978125\pi\)
0.829647 0.558289i \(-0.188542\pi\)
\(758\) 0 0
\(759\) 11.1358 21.5834i 0.404204 0.783427i
\(760\) 0 0
\(761\) −12.0812 + 20.9252i −0.437942 + 0.758537i −0.997531 0.0702329i \(-0.977626\pi\)
0.559589 + 0.828770i \(0.310959\pi\)
\(762\) 0 0
\(763\) −2.64996 + 2.64996i −0.0959352 + 0.0959352i
\(764\) 0 0
\(765\) 10.5062 + 14.7740i 0.379852 + 0.534154i
\(766\) 0 0
\(767\) 13.9729 0.504532
\(768\) 0 0
\(769\) −9.70494 9.70494i −0.349969 0.349969i 0.510129 0.860098i \(-0.329598\pi\)
−0.860098 + 0.510129i \(0.829598\pi\)
\(770\) 0 0
\(771\) −18.9522 29.5111i −0.682547 1.06282i
\(772\) 0 0
\(773\) −18.1079 + 10.4546i −0.651296 + 0.376026i −0.788953 0.614454i \(-0.789376\pi\)
0.137656 + 0.990480i \(0.456043\pi\)
\(774\) 0 0
\(775\) −4.94049 18.4382i −0.177468 0.662319i
\(776\) 0 0
\(777\) 2.94865 25.9909i 0.105782 0.932418i
\(778\) 0 0
\(779\) 1.23577 + 4.61196i 0.0442761 + 0.165241i
\(780\) 0 0
\(781\) −64.9759 + 37.5139i −2.32502 + 1.34235i
\(782\) 0 0
\(783\) 4.68481 0.668961i 0.167421 0.0239067i
\(784\) 0 0
\(785\) −5.68327 5.68327i −0.202845 0.202845i
\(786\) 0 0
\(787\) 17.7312 0.632049 0.316025 0.948751i \(-0.397652\pi\)
0.316025 + 0.948751i \(0.397652\pi\)
\(788\) 0 0
\(789\) −24.6728 + 27.1234i −0.878373 + 0.965619i
\(790\) 0 0
\(791\) −18.5260 + 18.5260i −0.658709 + 0.658709i
\(792\) 0 0
\(793\) 2.11158 3.65737i 0.0749844 0.129877i
\(794\) 0 0
\(795\) −10.5641 5.45045i −0.374669 0.193308i
\(796\) 0 0
\(797\) 14.2083 + 53.0262i 0.503285 + 1.87829i 0.477526 + 0.878617i \(0.341533\pi\)
0.0257586 + 0.999668i \(0.491800\pi\)
\(798\) 0 0
\(799\) −6.88963 25.7124i −0.243738 0.909641i
\(800\) 0 0
\(801\) 15.1589 + 12.5326i 0.535613 + 0.442819i
\(802\) 0 0
\(803\) 71.6877i 2.52980i
\(804\) 0 0
\(805\) −8.95234 5.16864i −0.315529 0.182171i
\(806\) 0 0
\(807\) 0.792136 0.252938i 0.0278845 0.00890383i
\(808\) 0 0
\(809\) 4.66860 + 1.25095i 0.164139 + 0.0439810i 0.339953 0.940442i \(-0.389589\pi\)
−0.175813 + 0.984423i \(0.556256\pi\)
\(810\) 0 0
\(811\) 20.0693 + 34.7610i 0.704727 + 1.22062i 0.966790 + 0.255572i \(0.0822639\pi\)
−0.262063 + 0.965051i \(0.584403\pi\)
\(812\) 0 0
\(813\) −8.92311 1.94411i −0.312947 0.0681828i
\(814\) 0 0
\(815\) 35.9435i 1.25905i
\(816\) 0 0
\(817\) 15.1877 8.76860i 0.531349 0.306774i
\(818\) 0 0
\(819\) 8.32423 + 6.88207i 0.290872 + 0.240479i
\(820\) 0 0
\(821\) 21.9154 12.6529i 0.764854 0.441589i −0.0661818 0.997808i \(-0.521082\pi\)
0.831036 + 0.556219i \(0.187748\pi\)
\(822\) 0 0
\(823\) −13.3502 + 23.1232i −0.465359 + 0.806025i −0.999218 0.0395487i \(-0.987408\pi\)
0.533859 + 0.845574i \(0.320741\pi\)
\(824\) 0 0
\(825\) −4.69383 + 21.5438i −0.163418 + 0.750059i
\(826\) 0 0
\(827\) 5.34553 19.9498i 0.185882 0.693722i −0.808558 0.588417i \(-0.799751\pi\)
0.994440 0.105305i \(-0.0335819\pi\)
\(828\) 0 0
\(829\) −4.57491 + 1.22584i −0.158893 + 0.0425753i −0.337389 0.941365i \(-0.609544\pi\)
0.178496 + 0.983941i \(0.442877\pi\)
\(830\) 0 0
\(831\) −12.3045 + 0.582170i −0.426838 + 0.0201953i
\(832\) 0 0
\(833\) −0.795705 + 2.96961i −0.0275695 + 0.102891i
\(834\) 0 0
\(835\) 8.67906 + 5.01086i 0.300351 + 0.173408i
\(836\) 0 0
\(837\) −6.09411 42.6777i −0.210643 1.47516i
\(838\) 0 0
\(839\) 25.6817 44.4820i 0.886630 1.53569i 0.0427960 0.999084i \(-0.486373\pi\)
0.843834 0.536604i \(-0.180293\pi\)
\(840\) 0 0
\(841\) 28.1706i 0.971399i
\(842\) 0 0
\(843\) −22.4189 34.9092i −0.772149 1.20234i
\(844\) 0 0
\(845\) 12.6597 12.6597i 0.435505 0.435505i
\(846\) 0 0
\(847\) −24.3486 42.1730i −0.836627 1.44908i
\(848\) 0 0
\(849\) 51.3868 2.43129i 1.76359 0.0834418i
\(850\) 0 0
\(851\) 15.2177 + 2.45965i 0.521657 + 0.0843157i
\(852\) 0 0
\(853\) −52.0438 + 13.9451i −1.78195 + 0.477471i −0.990937 0.134331i \(-0.957111\pi\)
−0.791011 + 0.611802i \(0.790445\pi\)
\(854\) 0 0
\(855\) 0.833759 + 8.79127i 0.0285140 + 0.300655i
\(856\) 0 0
\(857\) 3.10757 + 3.10757i 0.106153 + 0.106153i 0.758188 0.652036i \(-0.226085\pi\)
−0.652036 + 0.758188i \(0.726085\pi\)
\(858\) 0 0
\(859\) 19.6609 19.6609i 0.670823 0.670823i −0.287083 0.957906i \(-0.592686\pi\)
0.957906 + 0.287083i \(0.0926856\pi\)
\(860\) 0 0
\(861\) 11.1973 + 2.43960i 0.381604 + 0.0831413i
\(862\) 0 0
\(863\) −4.07270 2.35137i −0.138636 0.0800416i 0.429078 0.903268i \(-0.358839\pi\)
−0.567714 + 0.823226i \(0.692172\pi\)
\(864\) 0 0
\(865\) −0.242216 0.242216i −0.00823560 0.00823560i
\(866\) 0 0
\(867\) 4.44782 + 4.04595i 0.151056 + 0.137408i
\(868\) 0 0
\(869\) 56.4504 + 15.1258i 1.91495 + 0.513109i
\(870\) 0 0
\(871\) 14.9342 4.00160i 0.506025 0.135589i
\(872\) 0 0
\(873\) 4.59540 27.2208i 0.155531 0.921283i
\(874\) 0 0
\(875\) 28.7653 + 7.70764i 0.972445 + 0.260566i
\(876\) 0 0
\(877\) 26.3715 0.890504 0.445252 0.895405i \(-0.353114\pi\)
0.445252 + 0.895405i \(0.353114\pi\)
\(878\) 0 0
\(879\) 39.3590 + 35.8028i 1.32755 + 1.20760i
\(880\) 0 0
\(881\) 11.6859 + 20.2405i 0.393707 + 0.681920i 0.992935 0.118658i \(-0.0378593\pi\)
−0.599229 + 0.800578i \(0.704526\pi\)
\(882\) 0 0
\(883\) −6.21035 + 23.1773i −0.208995 + 0.779979i 0.779200 + 0.626776i \(0.215626\pi\)
−0.988195 + 0.153204i \(0.951041\pi\)
\(884\) 0 0
\(885\) 26.1210 8.34071i 0.878047 0.280370i
\(886\) 0 0
\(887\) 21.8215 0.732693 0.366347 0.930478i \(-0.380608\pi\)
0.366347 + 0.930478i \(0.380608\pi\)
\(888\) 0 0
\(889\) 28.2866 0.948702
\(890\) 0 0
\(891\) −16.3475 + 47.0372i −0.547662 + 1.57580i
\(892\) 0 0
\(893\) 3.35602 12.5248i 0.112305 0.419128i
\(894\) 0 0
\(895\) −10.7664 18.6479i −0.359881 0.623332i
\(896\) 0 0
\(897\) −4.28306 + 4.70848i −0.143007 + 0.157212i
\(898\) 0 0
\(899\) −7.55605 −0.252008
\(900\) 0 0
\(901\) 14.8412 + 3.97670i 0.494433 + 0.132483i
\(902\) 0 0
\(903\) −1.98931 42.0453i −0.0662002 1.39918i
\(904\) 0 0
\(905\) −31.4230 + 8.41976i −1.04453 + 0.279882i
\(906\) 0 0
\(907\) 13.6425 + 3.65549i 0.452990 + 0.121378i 0.478098 0.878306i \(-0.341326\pi\)
−0.0251079 + 0.999685i \(0.507993\pi\)
\(908\) 0 0
\(909\) −3.78697 + 2.69302i −0.125606 + 0.0893218i
\(910\) 0 0
\(911\) 29.4855 + 29.4855i 0.976899 + 0.976899i 0.999739 0.0228400i \(-0.00727083\pi\)
−0.0228400 + 0.999739i \(0.507271\pi\)
\(912\) 0 0
\(913\) 28.3886 + 16.3902i 0.939526 + 0.542436i
\(914\) 0 0
\(915\) 1.76424 8.09754i 0.0583240 0.267696i
\(916\) 0 0
\(917\) 17.1990 17.1990i 0.567960 0.567960i
\(918\) 0 0
\(919\) 18.5284 + 18.5284i 0.611196 + 0.611196i 0.943258 0.332061i \(-0.107744\pi\)
−0.332061 + 0.943258i \(0.607744\pi\)
\(920\) 0 0
\(921\) 4.04294 1.29096i 0.133219 0.0425384i
\(922\) 0 0
\(923\) 18.9933 5.08924i 0.625172 0.167514i
\(924\) 0 0
\(925\) −13.9229 + 1.41882i −0.457782 + 0.0466504i
\(926\) 0 0
\(927\) −14.4328 2.43654i −0.474036 0.0800266i
\(928\) 0 0
\(929\) 5.75253 + 9.96368i 0.188734 + 0.326898i 0.944829 0.327565i \(-0.106228\pi\)
−0.756094 + 0.654463i \(0.772895\pi\)
\(930\) 0 0
\(931\) −1.05894 + 1.05894i −0.0347052 + 0.0347052i
\(932\) 0 0
\(933\) −36.1448 + 23.2124i −1.18333 + 0.759941i
\(934\) 0 0
\(935\) 33.4354i 1.09345i
\(936\) 0 0
\(937\) 4.20853 7.28938i 0.137487 0.238134i −0.789058 0.614319i \(-0.789431\pi\)
0.926545 + 0.376185i \(0.122764\pi\)
\(938\) 0 0
\(939\) 26.6414 17.1093i 0.869410 0.558341i
\(940\) 0 0
\(941\) −41.8479 24.1609i −1.36420 0.787623i −0.374023 0.927420i \(-0.622022\pi\)
−0.990180 + 0.139797i \(0.955355\pi\)
\(942\) 0 0
\(943\) −1.74797 + 6.52350i −0.0569216 + 0.212434i
\(944\) 0 0
\(945\) 19.6694 + 7.89646i 0.639845 + 0.256872i
\(946\) 0 0
\(947\) 28.3305 7.59113i 0.920617 0.246679i 0.232768 0.972532i \(-0.425222\pi\)
0.687849 + 0.725854i \(0.258555\pi\)
\(948\) 0 0
\(949\) 4.86268 18.1478i 0.157849 0.589101i
\(950\) 0 0
\(951\) −51.6358 11.2501i −1.67440 0.364808i
\(952\) 0 0
\(953\) 8.10811 14.0437i 0.262647 0.454919i −0.704297 0.709905i \(-0.748738\pi\)
0.966945 + 0.254987i \(0.0820711\pi\)
\(954\) 0 0
\(955\) 6.55738 3.78591i 0.212192 0.122509i
\(956\) 0 0
\(957\) 7.75645 + 4.00189i 0.250730 + 0.129363i
\(958\) 0 0
\(959\) −2.18137 + 1.25941i −0.0704400 + 0.0406686i
\(960\) 0 0
\(961\) 37.8341i 1.22045i
\(962\) 0 0
\(963\) −17.6326 + 38.5444i −0.568202 + 1.24207i
\(964\) 0 0
\(965\) 8.49265 + 14.7097i 0.273388 + 0.473522i
\(966\) 0 0
\(967\) −49.6497 13.3036i −1.59663 0.427815i −0.652604 0.757699i \(-0.726324\pi\)
−0.944021 + 0.329884i \(0.892990\pi\)
\(968\) 0 0
\(969\) −3.47193 10.8732i −0.111535 0.349298i
\(970\) 0 0
\(971\) 8.43329 + 4.86896i 0.270637 + 0.156252i 0.629177 0.777262i \(-0.283392\pi\)
−0.358540 + 0.933514i \(0.616725\pi\)
\(972\) 0 0
\(973\) 10.1630i 0.325810i
\(974\) 0 0
\(975\) 2.64959 5.13544i 0.0848548 0.164466i
\(976\) 0 0
\(977\) −6.20625 23.1620i −0.198555 0.741019i −0.991318 0.131488i \(-0.958025\pi\)
0.792762 0.609531i \(-0.208642\pi\)
\(978\) 0 0
\(979\) 9.38883 + 35.0396i 0.300068 + 1.11987i
\(980\) 0 0
\(981\) 3.49004 + 2.88540i 0.111429 + 0.0921237i
\(982\) 0 0
\(983\) 30.1024 52.1389i 0.960117 1.66297i 0.237918 0.971285i \(-0.423535\pi\)
0.722198 0.691686i \(-0.243132\pi\)
\(984\) 0 0
\(985\) 23.0592 23.0592i 0.734727 0.734727i
\(986\) 0 0
\(987\) −23.0222 20.9421i −0.732805 0.666595i
\(988\) 0 0
\(989\) 24.8059 0.788782
\(990\) 0 0
\(991\) 21.2761 + 21.2761i 0.675857 + 0.675857i 0.959060 0.283203i \(-0.0913970\pi\)
−0.283203 + 0.959060i \(0.591397\pi\)
\(992\) 0 0
\(993\) −44.6421 + 28.6694i −1.41667 + 0.909797i
\(994\) 0 0
\(995\) 25.2910 14.6017i 0.801777 0.462906i
\(996\) 0 0
\(997\) 12.3876 + 46.2312i 0.392320 + 1.46416i 0.826297 + 0.563234i \(0.190443\pi\)
−0.433977 + 0.900924i \(0.642890\pi\)
\(998\) 0 0
\(999\) −31.6016 0.581840i −0.999831 0.0184086i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 444.2.w.c.125.4 40
3.2 odd 2 inner 444.2.w.c.125.8 yes 40
37.8 odd 12 inner 444.2.w.c.341.8 yes 40
111.8 even 12 inner 444.2.w.c.341.4 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
444.2.w.c.125.4 40 1.1 even 1 trivial
444.2.w.c.125.8 yes 40 3.2 odd 2 inner
444.2.w.c.341.4 yes 40 111.8 even 12 inner
444.2.w.c.341.8 yes 40 37.8 odd 12 inner