Properties

Label 2-42e2-7.4-c3-0-12
Degree $2$
Conductor $1764$
Sign $0.701 - 0.712i$
Analytic cond. $104.079$
Root an. cond. $10.2019$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3 − 5.19i)5-s + (18 − 31.1i)11-s − 62·13-s + (−57 + 98.7i)17-s + (−38 − 65.8i)19-s + (−12 − 20.7i)23-s + (44.5 − 77.0i)25-s − 54·29-s + (−56 + 96.9i)31-s + (89 + 154. i)37-s + 378·41-s − 172·43-s + (96 + 166. i)47-s + (−201 + 348. i)53-s − 216·55-s + ⋯
L(s)  = 1  + (−0.268 − 0.464i)5-s + (0.493 − 0.854i)11-s − 1.32·13-s + (−0.813 + 1.40i)17-s + (−0.458 − 0.794i)19-s + (−0.108 − 0.188i)23-s + (0.355 − 0.616i)25-s − 0.345·29-s + (−0.324 + 0.561i)31-s + (0.395 + 0.684i)37-s + 1.43·41-s − 0.609·43-s + (0.297 + 0.516i)47-s + (−0.520 + 0.902i)53-s − 0.529·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $0.701 - 0.712i$
Analytic conductor: \(104.079\)
Root analytic conductor: \(10.2019\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1764} (361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :3/2),\ 0.701 - 0.712i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.154658353\)
\(L(\frac12)\) \(\approx\) \(1.154658353\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + (3 + 5.19i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (-18 + 31.1i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + 62T + 2.19e3T^{2} \)
17 \( 1 + (57 - 98.7i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (38 + 65.8i)T + (-3.42e3 + 5.94e3i)T^{2} \)
23 \( 1 + (12 + 20.7i)T + (-6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 + 54T + 2.43e4T^{2} \)
31 \( 1 + (56 - 96.9i)T + (-1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + (-89 - 154. i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 - 378T + 6.89e4T^{2} \)
43 \( 1 + 172T + 7.95e4T^{2} \)
47 \( 1 + (-96 - 166. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (201 - 348. i)T + (-7.44e4 - 1.28e5i)T^{2} \)
59 \( 1 + (198 - 342. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (-127 - 219. i)T + (-1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (-506 + 876. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + 840T + 3.57e5T^{2} \)
73 \( 1 + (-445 + 770. i)T + (-1.94e5 - 3.36e5i)T^{2} \)
79 \( 1 + (40 + 69.2i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + 108T + 5.71e5T^{2} \)
89 \( 1 + (-819 - 1.41e3i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 + 1.01e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.923497652162725536121609070862, −8.377416197079429333854448799420, −7.52185868061613281143560104556, −6.57334375772520202614523992490, −5.91861075097303946200358644003, −4.74411503840821895583870477903, −4.23843192129614131371634627072, −3.06001763876551630952708410185, −2.01840154608359979620468136520, −0.73809328277203389995923891327, 0.33109818455107951230742245447, 1.92024308705085918366006901710, 2.70456784454764596783976509523, 3.88302496441562025885601956134, 4.67221805095848334298301244823, 5.52363707822920626694777538804, 6.69320365203738603565965598293, 7.23050638232465351042308915128, 7.82001890065565460814948374560, 9.029255558592590997349599013697

Graph of the $Z$-function along the critical line