L(s) = 1 | + (−3 + 5.19i)5-s + (18 + 31.1i)11-s − 62·13-s + (−57 − 98.7i)17-s + (−38 + 65.8i)19-s + (−12 + 20.7i)23-s + (44.5 + 77.0i)25-s − 54·29-s + (−56 − 96.9i)31-s + (89 − 154. i)37-s + 378·41-s − 172·43-s + (96 − 166. i)47-s + (−201 − 348. i)53-s − 216·55-s + ⋯ |
L(s) = 1 | + (−0.268 + 0.464i)5-s + (0.493 + 0.854i)11-s − 1.32·13-s + (−0.813 − 1.40i)17-s + (−0.458 + 0.794i)19-s + (−0.108 + 0.188i)23-s + (0.355 + 0.616i)25-s − 0.345·29-s + (−0.324 − 0.561i)31-s + (0.395 − 0.684i)37-s + 1.43·41-s − 0.609·43-s + (0.297 − 0.516i)47-s + (−0.520 − 0.902i)53-s − 0.529·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.154658353\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.154658353\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (3 - 5.19i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-18 - 31.1i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 62T + 2.19e3T^{2} \) |
| 17 | \( 1 + (57 + 98.7i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (38 - 65.8i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (12 - 20.7i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 54T + 2.43e4T^{2} \) |
| 31 | \( 1 + (56 + 96.9i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-89 + 154. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 378T + 6.89e4T^{2} \) |
| 43 | \( 1 + 172T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-96 + 166. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (201 + 348. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (198 + 342. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-127 + 219. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-506 - 876. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 840T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-445 - 770. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (40 - 69.2i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 108T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-819 + 1.41e3i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.01e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.029255558592590997349599013697, −7.82001890065565460814948374560, −7.23050638232465351042308915128, −6.69320365203738603565965598293, −5.52363707822920626694777538804, −4.67221805095848334298301244823, −3.88302496441562025885601956134, −2.70456784454764596783976509523, −1.92024308705085918366006901710, −0.33109818455107951230742245447,
0.73809328277203389995923891327, 2.01840154608359979620468136520, 3.06001763876551630952708410185, 4.23843192129614131371634627072, 4.74411503840821895583870477903, 5.91861075097303946200358644003, 6.57334375772520202614523992490, 7.52185868061613281143560104556, 8.377416197079429333854448799420, 8.923497652162725536121609070862