L(s) = 1 | + (−7 + 12.1i)5-s + (2 + 3.46i)11-s − 54·13-s + (7 + 12.1i)17-s + (46 − 79.6i)19-s + (−76 + 131. i)23-s + (−35.5 − 61.4i)25-s + 106·29-s + (−72 − 124. i)31-s + (−79 + 136. i)37-s − 390·41-s − 508·43-s + (264 − 457. i)47-s + (303 + 524. i)53-s − 56·55-s + ⋯ |
L(s) = 1 | + (−0.626 + 1.08i)5-s + (0.0548 + 0.0949i)11-s − 1.15·13-s + (0.0998 + 0.172i)17-s + (0.555 − 0.962i)19-s + (−0.689 + 1.19i)23-s + (−0.284 − 0.491i)25-s + 0.678·29-s + (−0.417 − 0.722i)31-s + (−0.351 + 0.607i)37-s − 1.48·41-s − 1.80·43-s + (0.819 − 1.41i)47-s + (0.785 + 1.36i)53-s − 0.137·55-s + ⋯ |
Λ(s)=(=(1764s/2ΓC(s)L(s)(0.701+0.712i)Λ(4−s)
Λ(s)=(=(1764s/2ΓC(s+3/2)L(s)(0.701+0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
1764
= 22⋅32⋅72
|
Sign: |
0.701+0.712i
|
Analytic conductor: |
104.079 |
Root analytic conductor: |
10.2019 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1764(1549,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1764, ( :3/2), 0.701+0.712i)
|
Particular Values
L(2) |
≈ |
0.8703959735 |
L(21) |
≈ |
0.8703959735 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(7−12.1i)T+(−62.5−108.i)T2 |
| 11 | 1+(−2−3.46i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+54T+2.19e3T2 |
| 17 | 1+(−7−12.1i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(−46+79.6i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(76−131.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1−106T+2.43e4T2 |
| 31 | 1+(72+124.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(79−136.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1+390T+6.89e4T2 |
| 43 | 1+508T+7.95e4T2 |
| 47 | 1+(−264+457.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(−303−524.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(−182−315.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−339+587.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(422+730.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−8T+3.57e5T2 |
| 73 | 1+(211+365.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(192−332.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+548T+5.71e5T2 |
| 89 | 1+(597−1.03e3i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1−1.50e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.803236541659455994071232772075, −7.86463778025056962124715734647, −7.18682960306889698664887081531, −6.73881941205815215816568921045, −5.56215768741735501964362194228, −4.72353801754445482187896605658, −3.62416465456978357378464029709, −2.94720772149283709558080133627, −1.88359291103016062084201304887, −0.25575609832500051718094835141,
0.73014116373006961153396147152, 1.90808326946200497236767025173, 3.16002931958306381153882573047, 4.19399119942902712756082169394, 4.89486061209085022996045719263, 5.61477844296193131685849828532, 6.77634702296945732052445013266, 7.53626397904229880616780520137, 8.430390731038530503622442267065, 8.745081393579294336469340450899