L(s) = 1 | + (2.79 + 1.15i)2-s + (0.451 − 0.675i)3-s + (3.65 + 3.65i)4-s + (2.04 − 1.36i)6-s + (−1.53 + 7.70i)7-s + (1.34 + 3.25i)8-s + (3.19 + 7.70i)9-s + (4.48 + 6.71i)11-s + (4.11 − 0.818i)12-s + (−0.798 − 0.798i)13-s + (−13.2 + 19.7i)14-s − 9.98i·16-s + (15.7 + 6.50i)17-s + 25.2i·18-s + (−1.07 + 2.59i)19-s + ⋯ |
L(s) = 1 | + (1.39 + 0.579i)2-s + (0.150 − 0.225i)3-s + (0.913 + 0.913i)4-s + (0.340 − 0.227i)6-s + (−0.218 + 1.10i)7-s + (0.168 + 0.407i)8-s + (0.354 + 0.856i)9-s + (0.407 + 0.610i)11-s + (0.342 − 0.0682i)12-s + (−0.0614 − 0.0614i)13-s + (−0.943 + 1.41i)14-s − 0.624i·16-s + (0.923 + 0.382i)17-s + 1.40i·18-s + (−0.0566 + 0.136i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.168 - 0.985i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.168 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.90754 + 2.45208i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.90754 + 2.45208i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-15.7 - 6.50i)T \) |
good | 2 | \( 1 + (-2.79 - 1.15i)T + (2.82 + 2.82i)T^{2} \) |
| 3 | \( 1 + (-0.451 + 0.675i)T + (-3.44 - 8.31i)T^{2} \) |
| 7 | \( 1 + (1.53 - 7.70i)T + (-45.2 - 18.7i)T^{2} \) |
| 11 | \( 1 + (-4.48 - 6.71i)T + (-46.3 + 111. i)T^{2} \) |
| 13 | \( 1 + (0.798 + 0.798i)T + 169iT^{2} \) |
| 19 | \( 1 + (1.07 - 2.59i)T + (-255. - 255. i)T^{2} \) |
| 23 | \( 1 + (4.76 + 7.13i)T + (-202. + 488. i)T^{2} \) |
| 29 | \( 1 + (-0.599 - 3.01i)T + (-776. + 321. i)T^{2} \) |
| 31 | \( 1 + (7.13 - 10.6i)T + (-367. - 887. i)T^{2} \) |
| 37 | \( 1 + (-13.1 + 19.6i)T + (-523. - 1.26e3i)T^{2} \) |
| 41 | \( 1 + (-21.4 - 4.26i)T + (1.55e3 + 643. i)T^{2} \) |
| 43 | \( 1 + (-21.4 + 8.89i)T + (1.30e3 - 1.30e3i)T^{2} \) |
| 47 | \( 1 + (55.6 + 55.6i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (55.5 + 22.9i)T + (1.98e3 + 1.98e3i)T^{2} \) |
| 59 | \( 1 + (-25.3 + 10.5i)T + (2.46e3 - 2.46e3i)T^{2} \) |
| 61 | \( 1 + (-7.11 + 35.7i)T + (-3.43e3 - 1.42e3i)T^{2} \) |
| 67 | \( 1 + 117.T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-88.1 - 58.8i)T + (1.92e3 + 4.65e3i)T^{2} \) |
| 73 | \( 1 + (11.9 + 59.8i)T + (-4.92e3 + 2.03e3i)T^{2} \) |
| 79 | \( 1 + (52.9 + 79.2i)T + (-2.38e3 + 5.76e3i)T^{2} \) |
| 83 | \( 1 + (-45.4 + 109. i)T + (-4.87e3 - 4.87e3i)T^{2} \) |
| 89 | \( 1 + (-61.4 - 61.4i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (-24.1 + 4.79i)T + (8.69e3 - 3.60e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.62107359287636102983210529100, −10.30337519072356289247203513616, −9.308383702392335795203669252490, −8.107084781380685809103032660743, −7.21984154805909362170191107571, −6.22691518264866425521185480291, −5.40104326260852999497222348580, −4.52762545177539524156238516110, −3.29391872882597846464075055904, −2.04882447660668920248789281560,
1.12953359683853424700937573714, 3.00929409926633682035091963428, 3.78518196273588566468569802655, 4.54081107688023062309384415899, 5.82150467954655644783152871568, 6.68462201801946979429367425944, 7.84258199053840593679039292929, 9.232335978239345795528336089080, 10.08517361430368517628941479962, 11.02625045075949185107998482535