L(s) = 1 | + 2.38i·2-s + (2.23 + 2.23i)3-s − 3.69·4-s + (−5.32 + 5.32i)6-s + (0.155 − 0.155i)7-s − 4.04i·8-s + 6.95i·9-s + (0.371 − 0.371i)11-s + (−8.24 − 8.24i)12-s + 1.96·13-s + (0.371 + 0.371i)14-s + 2.25·16-s + (2.23 − 3.46i)17-s − 16.5·18-s − 4i·19-s + ⋯ |
L(s) = 1 | + 1.68i·2-s + (1.28 + 1.28i)3-s − 1.84·4-s + (−2.17 + 2.17i)6-s + (0.0587 − 0.0587i)7-s − 1.42i·8-s + 2.31i·9-s + (0.111 − 0.111i)11-s + (−2.37 − 2.37i)12-s + 0.545·13-s + (0.0992 + 0.0992i)14-s + 0.564·16-s + (0.541 − 0.841i)17-s − 3.90·18-s − 0.917i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.943 + 0.329i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.943 + 0.329i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.319561 - 1.88280i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.319561 - 1.88280i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-2.23 + 3.46i)T \) |
good | 2 | \( 1 - 2.38iT - 2T^{2} \) |
| 3 | \( 1 + (-2.23 - 2.23i)T + 3iT^{2} \) |
| 7 | \( 1 + (-0.155 + 0.155i)T - 7iT^{2} \) |
| 11 | \( 1 + (-0.371 + 0.371i)T - 11iT^{2} \) |
| 13 | \( 1 - 1.96T + 13T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 + (-0.263 + 0.263i)T - 23iT^{2} \) |
| 29 | \( 1 + (4.95 + 4.95i)T + 29iT^{2} \) |
| 31 | \( 1 + (-2.06 - 2.06i)T + 31iT^{2} \) |
| 37 | \( 1 + (-4.04 - 4.04i)T + 37iT^{2} \) |
| 41 | \( 1 + (-0.563 + 0.563i)T - 41iT^{2} \) |
| 43 | \( 1 - 2.49iT - 43T^{2} \) |
| 47 | \( 1 - 6.73T + 47T^{2} \) |
| 53 | \( 1 + 5.92iT - 53T^{2} \) |
| 59 | \( 1 - 6iT - 59T^{2} \) |
| 61 | \( 1 + (4 - 4i)T - 61iT^{2} \) |
| 67 | \( 1 + 11.5T + 67T^{2} \) |
| 71 | \( 1 + (5.06 + 5.06i)T + 71iT^{2} \) |
| 73 | \( 1 + (0.838 + 0.838i)T + 73iT^{2} \) |
| 79 | \( 1 + (-4.75 + 4.75i)T - 79iT^{2} \) |
| 83 | \( 1 + 6.11iT - 83T^{2} \) |
| 89 | \( 1 + 15.9T + 89T^{2} \) |
| 97 | \( 1 + (-6.51 - 6.51i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46399986626339427823147994779, −10.32628816911807241137316580284, −9.332564048725930912024306807610, −8.932918387721317734596934602406, −7.997843342667142541941950478889, −7.33251804425085837030741581900, −5.98067506605952785867493403897, −4.89501370821803523404062536700, −4.15495200050840558693155687476, −2.88262674960254587921120167244,
1.25158081202312994184748756658, 2.10005423651942766073057479027, 3.24910307374561654247165521117, 3.98910942136500237746214171943, 5.93039580082884512041588446735, 7.26851443340741312296706921776, 8.237872596272266127280189759874, 8.933697626750876846239980970620, 9.767246669565860332771412089591, 10.77479824601101696107137665483