Properties

Label 425.2.e.d.251.6
Level $425$
Weight $2$
Character 425.251
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(251,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 188x^{8} + 572x^{6} + 776x^{4} + 464x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 251.6
Root \(3.38621i\) of defining polynomial
Character \(\chi\) \(=\) 425.251
Dual form 425.2.e.d.276.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.38621i q^{2} +(2.23065 + 2.23065i) q^{3} -3.69399 q^{4} +(-5.32280 + 5.32280i) q^{6} +(0.155559 - 0.155559i) q^{7} -4.04223i q^{8} +6.95160i q^{9} +(0.371196 - 0.371196i) q^{11} +(-8.24001 - 8.24001i) q^{12} +1.96713 q^{13} +(0.371196 + 0.371196i) q^{14} +2.25761 q^{16} +(2.23065 - 3.46759i) q^{17} -16.5880 q^{18} -4.00000i q^{19} +0.693995 q^{21} +(0.885751 + 0.885751i) q^{22} +(0.263516 - 0.263516i) q^{23} +(9.01679 - 9.01679i) q^{24} +4.69399i q^{26} +(-8.81464 + 8.81464i) q^{27} +(-0.574634 + 0.574634i) q^{28} +(-4.95160 - 4.95160i) q^{29} +(2.06519 + 2.06519i) q^{31} -2.69733i q^{32} +1.65602 q^{33} +(8.27440 + 5.32280i) q^{34} -25.6792i q^{36} +(4.04223 + 4.04223i) q^{37} +9.54484 q^{38} +(4.38799 + 4.38799i) q^{39} +(0.563613 - 0.563613i) q^{41} +1.65602i q^{42} +2.49417i q^{43} +(-1.37120 + 1.37120i) q^{44} +(0.628804 + 0.628804i) q^{46} +6.73955 q^{47} +(5.03593 + 5.03593i) q^{48} +6.95160i q^{49} +(12.7108 - 2.75919i) q^{51} -7.26658 q^{52} -5.92169i q^{53} +(-21.0336 - 21.0336i) q^{54} +(-0.628804 - 0.628804i) q^{56} +(8.92260 - 8.92260i) q^{57} +(11.8156 - 11.8156i) q^{58} +6.00000i q^{59} +(-4.00000 + 4.00000i) q^{61} +(-4.92798 + 4.92798i) q^{62} +(1.08138 + 1.08138i) q^{63} +10.9516 q^{64} +3.95160i q^{66} -11.5120 q^{67} +(-8.24001 + 12.8093i) q^{68} +1.17562 q^{69} +(-5.06519 - 5.06519i) q^{71} +28.1000 q^{72} +(-0.838149 - 0.838149i) q^{73} +(-9.64560 + 9.64560i) q^{74} +14.7760i q^{76} -0.115486i q^{77} +(-10.4707 + 10.4707i) q^{78} +(4.75919 - 4.75919i) q^{79} -18.4700 q^{81} +(1.34490 + 1.34490i) q^{82} -6.11732i q^{83} -2.56361 q^{84} -5.95160 q^{86} -22.0906i q^{87} +(-1.50046 - 1.50046i) q^{88} -15.9852 q^{89} +(0.306005 - 0.306005i) q^{91} +(-0.973426 + 0.973426i) q^{92} +9.21344i q^{93} +16.0820i q^{94} +(6.01679 - 6.01679i) q^{96} +(6.51611 + 6.51611i) q^{97} -16.5880 q^{98} +(2.58041 + 2.58041i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 20 q^{6} + 16 q^{11} + 16 q^{14} + 4 q^{16} - 24 q^{21} + 32 q^{24} - 4 q^{29} + 4 q^{31} - 12 q^{39} + 16 q^{41} - 28 q^{44} - 4 q^{46} + 44 q^{51} - 100 q^{54} + 4 q^{56} - 48 q^{61}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.38621i 1.68730i 0.536890 + 0.843652i \(0.319599\pi\)
−0.536890 + 0.843652i \(0.680401\pi\)
\(3\) 2.23065 + 2.23065i 1.28787 + 1.28787i 0.936080 + 0.351786i \(0.114426\pi\)
0.351786 + 0.936080i \(0.385574\pi\)
\(4\) −3.69399 −1.84700
\(5\) 0 0
\(6\) −5.32280 + 5.32280i −2.17302 + 2.17302i
\(7\) 0.155559 0.155559i 0.0587957 0.0587957i −0.677098 0.735893i \(-0.736762\pi\)
0.735893 + 0.677098i \(0.236762\pi\)
\(8\) 4.04223i 1.42914i
\(9\) 6.95160i 2.31720i
\(10\) 0 0
\(11\) 0.371196 0.371196i 0.111920 0.111920i −0.648929 0.760849i \(-0.724783\pi\)
0.760849 + 0.648929i \(0.224783\pi\)
\(12\) −8.24001 8.24001i −2.37869 2.37869i
\(13\) 1.96713 0.545585 0.272792 0.962073i \(-0.412053\pi\)
0.272792 + 0.962073i \(0.412053\pi\)
\(14\) 0.371196 + 0.371196i 0.0992063 + 0.0992063i
\(15\) 0 0
\(16\) 2.25761 0.564402
\(17\) 2.23065 3.46759i 0.541012 0.841015i
\(18\) −16.5880 −3.90982
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 0.693995 0.151442
\(22\) 0.885751 + 0.885751i 0.188843 + 0.188843i
\(23\) 0.263516 0.263516i 0.0549469 0.0549469i −0.679099 0.734046i \(-0.737629\pi\)
0.734046 + 0.679099i \(0.237629\pi\)
\(24\) 9.01679 9.01679i 1.84055 1.84055i
\(25\) 0 0
\(26\) 4.69399i 0.920568i
\(27\) −8.81464 + 8.81464i −1.69638 + 1.69638i
\(28\) −0.574634 + 0.574634i −0.108596 + 0.108596i
\(29\) −4.95160 4.95160i −0.919490 0.919490i 0.0775026 0.996992i \(-0.475305\pi\)
−0.996992 + 0.0775026i \(0.975305\pi\)
\(30\) 0 0
\(31\) 2.06519 + 2.06519i 0.370919 + 0.370919i 0.867812 0.496893i \(-0.165526\pi\)
−0.496893 + 0.867812i \(0.665526\pi\)
\(32\) 2.69733i 0.476825i
\(33\) 1.65602 0.288276
\(34\) 8.27440 + 5.32280i 1.41905 + 0.912852i
\(35\) 0 0
\(36\) 25.6792i 4.27986i
\(37\) 4.04223 + 4.04223i 0.664538 + 0.664538i 0.956446 0.291908i \(-0.0942902\pi\)
−0.291908 + 0.956446i \(0.594290\pi\)
\(38\) 9.54484 1.54838
\(39\) 4.38799 + 4.38799i 0.702641 + 0.702641i
\(40\) 0 0
\(41\) 0.563613 0.563613i 0.0880216 0.0880216i −0.661725 0.749747i \(-0.730175\pi\)
0.749747 + 0.661725i \(0.230175\pi\)
\(42\) 1.65602i 0.255529i
\(43\) 2.49417i 0.380357i 0.981750 + 0.190178i \(0.0609066\pi\)
−0.981750 + 0.190178i \(0.939093\pi\)
\(44\) −1.37120 + 1.37120i −0.206716 + 0.206716i
\(45\) 0 0
\(46\) 0.628804 + 0.628804i 0.0927121 + 0.0927121i
\(47\) 6.73955 0.983065 0.491532 0.870859i \(-0.336437\pi\)
0.491532 + 0.870859i \(0.336437\pi\)
\(48\) 5.03593 + 5.03593i 0.726875 + 0.726875i
\(49\) 6.95160i 0.993086i
\(50\) 0 0
\(51\) 12.7108 2.75919i 1.77987 0.386363i
\(52\) −7.26658 −1.00769
\(53\) 5.92169i 0.813406i −0.913560 0.406703i \(-0.866678\pi\)
0.913560 0.406703i \(-0.133322\pi\)
\(54\) −21.0336 21.0336i −2.86231 2.86231i
\(55\) 0 0
\(56\) −0.628804 0.628804i −0.0840275 0.0840275i
\(57\) 8.92260 8.92260i 1.18183 1.18183i
\(58\) 11.8156 11.8156i 1.55146 1.55146i
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) −4.00000 + 4.00000i −0.512148 + 0.512148i −0.915184 0.403036i \(-0.867955\pi\)
0.403036 + 0.915184i \(0.367955\pi\)
\(62\) −4.92798 + 4.92798i −0.625854 + 0.625854i
\(63\) 1.08138 + 1.08138i 0.136241 + 0.136241i
\(64\) 10.9516 1.36895
\(65\) 0 0
\(66\) 3.95160i 0.486409i
\(67\) −11.5120 −1.40641 −0.703206 0.710987i \(-0.748249\pi\)
−0.703206 + 0.710987i \(0.748249\pi\)
\(68\) −8.24001 + 12.8093i −0.999248 + 1.55335i
\(69\) 1.17562 0.141528
\(70\) 0 0
\(71\) −5.06519 5.06519i −0.601128 0.601128i 0.339484 0.940612i \(-0.389747\pi\)
−0.940612 + 0.339484i \(0.889747\pi\)
\(72\) 28.1000 3.31161
\(73\) −0.838149 0.838149i −0.0980980 0.0980980i 0.656355 0.754453i \(-0.272098\pi\)
−0.754453 + 0.656355i \(0.772098\pi\)
\(74\) −9.64560 + 9.64560i −1.12128 + 1.12128i
\(75\) 0 0
\(76\) 14.7760i 1.69492i
\(77\) 0.115486i 0.0131608i
\(78\) −10.4707 + 10.4707i −1.18557 + 1.18557i
\(79\) 4.75919 4.75919i 0.535450 0.535450i −0.386739 0.922189i \(-0.626399\pi\)
0.922189 + 0.386739i \(0.126399\pi\)
\(80\) 0 0
\(81\) −18.4700 −2.05222
\(82\) 1.34490 + 1.34490i 0.148519 + 0.148519i
\(83\) 6.11732i 0.671463i −0.941958 0.335731i \(-0.891017\pi\)
0.941958 0.335731i \(-0.108983\pi\)
\(84\) −2.56361 −0.279713
\(85\) 0 0
\(86\) −5.95160 −0.641778
\(87\) 22.0906i 2.36836i
\(88\) −1.50046 1.50046i −0.159949 0.159949i
\(89\) −15.9852 −1.69443 −0.847213 0.531253i \(-0.821721\pi\)
−0.847213 + 0.531253i \(0.821721\pi\)
\(90\) 0 0
\(91\) 0.306005 0.306005i 0.0320781 0.0320781i
\(92\) −0.973426 + 0.973426i −0.101487 + 0.101487i
\(93\) 9.21344i 0.955389i
\(94\) 16.0820i 1.65873i
\(95\) 0 0
\(96\) 6.01679 6.01679i 0.614086 0.614086i
\(97\) 6.51611 + 6.51611i 0.661611 + 0.661611i 0.955760 0.294149i \(-0.0950361\pi\)
−0.294149 + 0.955760i \(0.595036\pi\)
\(98\) −16.5880 −1.67564
\(99\) 2.58041 + 2.58041i 0.259341 + 0.259341i
\(100\) 0 0
\(101\) −7.20921 −0.717343 −0.358672 0.933464i \(-0.616770\pi\)
−0.358672 + 0.933464i \(0.616770\pi\)
\(102\) 6.58399 + 30.3306i 0.651913 + 3.00318i
\(103\) 9.52456 0.938482 0.469241 0.883070i \(-0.344528\pi\)
0.469241 + 0.883070i \(0.344528\pi\)
\(104\) 7.95160i 0.779719i
\(105\) 0 0
\(106\) 14.1304 1.37246
\(107\) 7.62530 + 7.62530i 0.737166 + 0.737166i 0.972029 0.234863i \(-0.0754640\pi\)
−0.234863 + 0.972029i \(0.575464\pi\)
\(108\) 32.5613 32.5613i 3.13321 3.13321i
\(109\) 9.95160 9.95160i 0.953191 0.953191i −0.0457617 0.998952i \(-0.514571\pi\)
0.998952 + 0.0457617i \(0.0145715\pi\)
\(110\) 0 0
\(111\) 18.0336i 1.71167i
\(112\) 0.351191 0.351191i 0.0331844 0.0331844i
\(113\) −5.08354 + 5.08354i −0.478219 + 0.478219i −0.904562 0.426343i \(-0.859802\pi\)
0.426343 + 0.904562i \(0.359802\pi\)
\(114\) 21.2912 + 21.2912i 1.99410 + 1.99410i
\(115\) 0 0
\(116\) 18.2912 + 18.2912i 1.69829 + 1.69829i
\(117\) 13.6747i 1.26423i
\(118\) −14.3173 −1.31801
\(119\) −0.192417 0.886412i −0.0176389 0.0812573i
\(120\) 0 0
\(121\) 10.7244i 0.974948i
\(122\) −9.54484 9.54484i −0.864149 0.864149i
\(123\) 2.51445 0.226720
\(124\) −7.62880 7.62880i −0.685087 0.685087i
\(125\) 0 0
\(126\) −2.58041 + 2.58041i −0.229881 + 0.229881i
\(127\) 9.74047i 0.864327i −0.901795 0.432163i \(-0.857750\pi\)
0.901795 0.432163i \(-0.142250\pi\)
\(128\) 20.7382i 1.83301i
\(129\) −5.56361 + 5.56361i −0.489849 + 0.489849i
\(130\) 0 0
\(131\) −13.9200 13.9200i −1.21620 1.21620i −0.968954 0.247242i \(-0.920476\pi\)
−0.247242 0.968954i \(-0.579524\pi\)
\(132\) −6.11732 −0.532444
\(133\) −0.622235 0.622235i −0.0539547 0.0539547i
\(134\) 27.4700i 2.37304i
\(135\) 0 0
\(136\) −14.0168 9.01679i −1.20193 0.773184i
\(137\) 4.65693 0.397869 0.198934 0.980013i \(-0.436252\pi\)
0.198934 + 0.980013i \(0.436252\pi\)
\(138\) 2.80528i 0.238802i
\(139\) 3.71079 + 3.71079i 0.314745 + 0.314745i 0.846745 0.532000i \(-0.178559\pi\)
−0.532000 + 0.846745i \(0.678559\pi\)
\(140\) 0 0
\(141\) 15.0336 + 15.0336i 1.26606 + 1.26606i
\(142\) 12.0866 12.0866i 1.01429 1.01429i
\(143\) 0.730192 0.730192i 0.0610618 0.0610618i
\(144\) 15.6940i 1.30783i
\(145\) 0 0
\(146\) 2.00000 2.00000i 0.165521 0.165521i
\(147\) −15.5066 + 15.5066i −1.27896 + 1.27896i
\(148\) −14.9320 14.9320i −1.22740 1.22740i
\(149\) −8.74239 −0.716205 −0.358102 0.933682i \(-0.616576\pi\)
−0.358102 + 0.933682i \(0.616576\pi\)
\(150\) 0 0
\(151\) 15.9032i 1.29418i −0.762412 0.647092i \(-0.775985\pi\)
0.762412 0.647092i \(-0.224015\pi\)
\(152\) −16.1689 −1.31147
\(153\) 24.1053 + 15.5066i 1.94880 + 1.25363i
\(154\) 0.275573 0.0222063
\(155\) 0 0
\(156\) −16.2092 16.2092i −1.29778 1.29778i
\(157\) 10.0719 0.803823 0.401911 0.915679i \(-0.368346\pi\)
0.401911 + 0.915679i \(0.368346\pi\)
\(158\) 11.3564 + 11.3564i 0.903468 + 0.903468i
\(159\) 13.2092 13.2092i 1.04756 1.04756i
\(160\) 0 0
\(161\) 0.0819845i 0.00646128i
\(162\) 44.0732i 3.46272i
\(163\) 6.77963 6.77963i 0.531021 0.531021i −0.389855 0.920876i \(-0.627475\pi\)
0.920876 + 0.389855i \(0.127475\pi\)
\(164\) −2.08198 + 2.08198i −0.162576 + 0.162576i
\(165\) 0 0
\(166\) 14.5972 1.13296
\(167\) −3.77871 3.77871i −0.292405 0.292405i 0.545624 0.838030i \(-0.316293\pi\)
−0.838030 + 0.545624i \(0.816293\pi\)
\(168\) 2.80528i 0.216432i
\(169\) −9.13038 −0.702337
\(170\) 0 0
\(171\) 27.8064 2.12641
\(172\) 9.21344i 0.702518i
\(173\) 12.3426 + 12.3426i 0.938390 + 0.938390i 0.998209 0.0598193i \(-0.0190524\pi\)
−0.0598193 + 0.998209i \(0.519052\pi\)
\(174\) 52.7128 3.99614
\(175\) 0 0
\(176\) 0.838015 0.838015i 0.0631678 0.0631678i
\(177\) −13.3839 + 13.3839i −1.00600 + 1.00600i
\(178\) 38.1440i 2.85901i
\(179\) 21.3248i 1.59389i −0.604052 0.796945i \(-0.706448\pi\)
0.604052 0.796945i \(-0.293552\pi\)
\(180\) 0 0
\(181\) 10.2092 10.2092i 0.758845 0.758845i −0.217267 0.976112i \(-0.569714\pi\)
0.976112 + 0.217267i \(0.0697144\pi\)
\(182\) 0.730192 + 0.730192i 0.0541255 + 0.0541255i
\(183\) −17.8452 −1.31916
\(184\) −1.06519 1.06519i −0.0785269 0.0785269i
\(185\) 0 0
\(186\) −21.9852 −1.61203
\(187\) −0.459148 2.11516i −0.0335762 0.154676i
\(188\) −24.8959 −1.81572
\(189\) 2.74239i 0.199480i
\(190\) 0 0
\(191\) −6.74239 −0.487862 −0.243931 0.969793i \(-0.578437\pi\)
−0.243931 + 0.969793i \(0.578437\pi\)
\(192\) 24.4292 + 24.4292i 1.76303 + 1.76303i
\(193\) −10.3627 + 10.3627i −0.745924 + 0.745924i −0.973711 0.227787i \(-0.926851\pi\)
0.227787 + 0.973711i \(0.426851\pi\)
\(194\) −15.5488 + 15.5488i −1.11634 + 1.11634i
\(195\) 0 0
\(196\) 25.6792i 1.83423i
\(197\) 0.614707 0.614707i 0.0437960 0.0437960i −0.684870 0.728666i \(-0.740141\pi\)
0.728666 + 0.684870i \(0.240141\pi\)
\(198\) −6.15739 + 6.15739i −0.437587 + 0.437587i
\(199\) −9.40478 9.40478i −0.666687 0.666687i 0.290260 0.956948i \(-0.406258\pi\)
−0.956948 + 0.290260i \(0.906258\pi\)
\(200\) 0 0
\(201\) −25.6792 25.6792i −1.81127 1.81127i
\(202\) 17.2027i 1.21038i
\(203\) −1.54053 −0.108124
\(204\) −46.9536 + 10.1924i −3.28741 + 0.713612i
\(205\) 0 0
\(206\) 22.7276i 1.58351i
\(207\) 1.83186 + 1.83186i 0.127323 + 0.127323i
\(208\) 4.44102 0.307929
\(209\) −1.48478 1.48478i −0.102705 0.102705i
\(210\) 0 0
\(211\) −12.5804 + 12.5804i −0.866071 + 0.866071i −0.992035 0.125964i \(-0.959798\pi\)
0.125964 + 0.992035i \(0.459798\pi\)
\(212\) 21.8747i 1.50236i
\(213\) 22.5973i 1.54834i
\(214\) −18.1956 + 18.1956i −1.24382 + 1.24382i
\(215\) 0 0
\(216\) 35.6308 + 35.6308i 2.42437 + 2.42437i
\(217\) 0.642517 0.0436169
\(218\) 23.7466 + 23.7466i 1.60832 + 1.60832i
\(219\) 3.73924i 0.252674i
\(220\) 0 0
\(221\) 4.38799 6.82122i 0.295168 0.458845i
\(222\) −43.0319 −2.88811
\(223\) 1.96713i 0.131729i 0.997829 + 0.0658645i \(0.0209805\pi\)
−0.997829 + 0.0658645i \(0.979019\pi\)
\(224\) −0.419593 0.419593i −0.0280352 0.0280352i
\(225\) 0 0
\(226\) −12.1304 12.1304i −0.806901 0.806901i
\(227\) −8.45593 + 8.45593i −0.561239 + 0.561239i −0.929659 0.368420i \(-0.879899\pi\)
0.368420 + 0.929659i \(0.379899\pi\)
\(228\) −32.9600 + 32.9600i −2.18283 + 2.18283i
\(229\) 9.30601i 0.614958i 0.951555 + 0.307479i \(0.0994854\pi\)
−0.951555 + 0.307479i \(0.900515\pi\)
\(230\) 0 0
\(231\) 0.257608 0.257608i 0.0169494 0.0169494i
\(232\) −20.0155 + 20.0155i −1.31408 + 1.31408i
\(233\) −18.2440 18.2440i −1.19520 1.19520i −0.975586 0.219618i \(-0.929519\pi\)
−0.219618 0.975586i \(-0.570481\pi\)
\(234\) −32.6308 −2.13314
\(235\) 0 0
\(236\) 22.1640i 1.44275i
\(237\) 21.2322 1.37918
\(238\) 2.11516 0.459148i 0.137106 0.0297621i
\(239\) 29.2912 1.89469 0.947345 0.320215i \(-0.103755\pi\)
0.947345 + 0.320215i \(0.103755\pi\)
\(240\) 0 0
\(241\) 6.00000 + 6.00000i 0.386494 + 0.386494i 0.873435 0.486941i \(-0.161887\pi\)
−0.486941 + 0.873435i \(0.661887\pi\)
\(242\) −25.5907 −1.64503
\(243\) −14.7561 14.7561i −0.946606 0.946606i
\(244\) 14.7760 14.7760i 0.945935 0.945935i
\(245\) 0 0
\(246\) 6.00000i 0.382546i
\(247\) 7.86854i 0.500663i
\(248\) 8.34797 8.34797i 0.530097 0.530097i
\(249\) 13.6456 13.6456i 0.864755 0.864755i
\(250\) 0 0
\(251\) −1.77282 −0.111900 −0.0559498 0.998434i \(-0.517819\pi\)
−0.0559498 + 0.998434i \(0.517819\pi\)
\(252\) −3.99462 3.99462i −0.251638 0.251638i
\(253\) 0.195632i 0.0122993i
\(254\) 23.2428 1.45838
\(255\) 0 0
\(256\) −27.5824 −1.72390
\(257\) 7.40235i 0.461746i −0.972984 0.230873i \(-0.925842\pi\)
0.972984 0.230873i \(-0.0741582\pi\)
\(258\) −13.2759 13.2759i −0.826524 0.826524i
\(259\) 1.25761 0.0781440
\(260\) 0 0
\(261\) 34.4216 34.4216i 2.13064 2.13064i
\(262\) 33.2160 33.2160i 2.05209 2.05209i
\(263\) 7.67291i 0.473132i −0.971615 0.236566i \(-0.923978\pi\)
0.971615 0.236566i \(-0.0760219\pi\)
\(264\) 6.69399i 0.411987i
\(265\) 0 0
\(266\) 1.48478 1.48478i 0.0910379 0.0910379i
\(267\) −35.6574 35.6574i −2.18220 2.18220i
\(268\) 42.5252 2.59764
\(269\) 5.56677 + 5.56677i 0.339412 + 0.339412i 0.856146 0.516734i \(-0.172852\pi\)
−0.516734 + 0.856146i \(0.672852\pi\)
\(270\) 0 0
\(271\) 18.0672 1.09750 0.548751 0.835986i \(-0.315103\pi\)
0.548751 + 0.835986i \(0.315103\pi\)
\(272\) 5.03593 7.82847i 0.305348 0.474670i
\(273\) 1.36518 0.0826245
\(274\) 11.1124i 0.671326i
\(275\) 0 0
\(276\) −4.34275 −0.261403
\(277\) −18.7786 18.7786i −1.12829 1.12829i −0.990455 0.137840i \(-0.955984\pi\)
−0.137840 0.990455i \(-0.544016\pi\)
\(278\) −8.85472 + 8.85472i −0.531071 + 0.531071i
\(279\) −14.3564 + 14.3564i −0.859494 + 0.859494i
\(280\) 0 0
\(281\) 13.7728i 0.821618i 0.911721 + 0.410809i \(0.134754\pi\)
−0.911721 + 0.410809i \(0.865246\pi\)
\(282\) −35.8733 + 35.8733i −2.13622 + 2.13622i
\(283\) −9.72068 + 9.72068i −0.577834 + 0.577834i −0.934306 0.356472i \(-0.883980\pi\)
0.356472 + 0.934306i \(0.383980\pi\)
\(284\) 18.7108 + 18.7108i 1.11028 + 1.11028i
\(285\) 0 0
\(286\) 1.74239 + 1.74239i 0.103030 + 0.103030i
\(287\) 0.175350i 0.0103506i
\(288\) 18.7507 1.10490
\(289\) −7.04840 15.4700i −0.414612 0.909998i
\(290\) 0 0
\(291\) 29.0703i 1.70413i
\(292\) 3.09612 + 3.09612i 0.181187 + 0.181187i
\(293\) 19.8873 1.16183 0.580913 0.813966i \(-0.302696\pi\)
0.580913 + 0.813966i \(0.302696\pi\)
\(294\) −37.0020 37.0020i −2.15800 2.15800i
\(295\) 0 0
\(296\) 16.3396 16.3396i 0.949720 0.949720i
\(297\) 6.54392i 0.379717i
\(298\) 20.8612i 1.20846i
\(299\) 0.518371 0.518371i 0.0299782 0.0299782i
\(300\) 0 0
\(301\) 0.387990 + 0.387990i 0.0223634 + 0.0223634i
\(302\) 37.9484 2.18368
\(303\) −16.0812 16.0812i −0.923843 0.923843i
\(304\) 9.03043i 0.517931i
\(305\) 0 0
\(306\) −37.0020 + 57.5204i −2.11526 + 3.28822i
\(307\) 14.9598 0.853799 0.426900 0.904299i \(-0.359606\pi\)
0.426900 + 0.904299i \(0.359606\pi\)
\(308\) 0.426603i 0.0243080i
\(309\) 21.2460 + 21.2460i 1.20864 + 1.20864i
\(310\) 0 0
\(311\) −20.9684 20.9684i −1.18901 1.18901i −0.977342 0.211667i \(-0.932111\pi\)
−0.211667 0.977342i \(-0.567889\pi\)
\(312\) 17.7372 17.7372i 1.00417 1.00417i
\(313\) 10.1671 10.1671i 0.574677 0.574677i −0.358755 0.933432i \(-0.616799\pi\)
0.933432 + 0.358755i \(0.116799\pi\)
\(314\) 24.0336i 1.35629i
\(315\) 0 0
\(316\) −17.5804 + 17.5804i −0.988975 + 0.988975i
\(317\) 9.74047 9.74047i 0.547079 0.547079i −0.378516 0.925595i \(-0.623565\pi\)
0.925595 + 0.378516i \(0.123565\pi\)
\(318\) 31.5199 + 31.5199i 1.76755 + 1.76755i
\(319\) −3.67603 −0.205818
\(320\) 0 0
\(321\) 34.0188i 1.89874i
\(322\) 0.195632 0.0109021
\(323\) −13.8704 8.92260i −0.771768 0.496467i
\(324\) 68.2280 3.79044
\(325\) 0 0
\(326\) 16.1776 + 16.1776i 0.895995 + 0.895995i
\(327\) 44.3971 2.45516
\(328\) −2.27825 2.27825i −0.125795 0.125795i
\(329\) 1.04840 1.04840i 0.0578000 0.0578000i
\(330\) 0 0
\(331\) 20.1640i 1.10831i −0.832413 0.554156i \(-0.813041\pi\)
0.832413 0.554156i \(-0.186959\pi\)
\(332\) 22.5973i 1.24019i
\(333\) −28.1000 + 28.1000i −1.53987 + 1.53987i
\(334\) 9.01679 9.01679i 0.493377 0.493377i
\(335\) 0 0
\(336\) 1.56677 0.0854742
\(337\) 20.2111 + 20.2111i 1.10097 + 1.10097i 0.994294 + 0.106677i \(0.0340210\pi\)
0.106677 + 0.994294i \(0.465979\pi\)
\(338\) 21.7870i 1.18506i
\(339\) −22.6792 −1.23176
\(340\) 0 0
\(341\) 1.53318 0.0830264
\(342\) 66.3519i 3.58790i
\(343\) 2.17030 + 2.17030i 0.117185 + 0.117185i
\(344\) 10.0820 0.543584
\(345\) 0 0
\(346\) −29.4520 + 29.4520i −1.58335 + 1.58335i
\(347\) −7.73326 + 7.73326i −0.415143 + 0.415143i −0.883526 0.468383i \(-0.844837\pi\)
0.468383 + 0.883526i \(0.344837\pi\)
\(348\) 81.6025i 4.37435i
\(349\) 0.645598i 0.0345581i 0.999851 + 0.0172790i \(0.00550036\pi\)
−0.999851 + 0.0172790i \(0.994500\pi\)
\(350\) 0 0
\(351\) −17.3396 + 17.3396i −0.925519 + 0.925519i
\(352\) −1.00124 1.00124i −0.0533661 0.0533661i
\(353\) 14.3022 0.761229 0.380615 0.924734i \(-0.375712\pi\)
0.380615 + 0.924734i \(0.375712\pi\)
\(354\) −31.9368 31.9368i −1.69742 1.69742i
\(355\) 0 0
\(356\) 59.0492 3.12960
\(357\) 1.54806 2.40649i 0.0819320 0.127365i
\(358\) 50.8854 2.68938
\(359\) 15.6760i 0.827349i 0.910425 + 0.413675i \(0.135755\pi\)
−0.910425 + 0.413675i \(0.864245\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 24.3613 + 24.3613i 1.28040 + 1.28040i
\(363\) −23.9224 + 23.9224i −1.25560 + 1.25560i
\(364\) −1.13038 + 1.13038i −0.0592481 + 0.0592481i
\(365\) 0 0
\(366\) 42.5824i 2.22582i
\(367\) −15.4863 + 15.4863i −0.808379 + 0.808379i −0.984388 0.176009i \(-0.943681\pi\)
0.176009 + 0.984388i \(0.443681\pi\)
\(368\) 0.594916 0.594916i 0.0310121 0.0310121i
\(369\) 3.91802 + 3.91802i 0.203964 + 0.203964i
\(370\) 0 0
\(371\) −0.921171 0.921171i −0.0478248 0.0478248i
\(372\) 34.0344i 1.76460i
\(373\) −6.50858 −0.337002 −0.168501 0.985702i \(-0.553893\pi\)
−0.168501 + 0.985702i \(0.553893\pi\)
\(374\) 5.04723 1.09562i 0.260986 0.0566533i
\(375\) 0 0
\(376\) 27.2428i 1.40494i
\(377\) −9.74047 9.74047i −0.501660 0.501660i
\(378\) −6.54392 −0.336583
\(379\) 5.32280 + 5.32280i 0.273414 + 0.273414i 0.830473 0.557059i \(-0.188070\pi\)
−0.557059 + 0.830473i \(0.688070\pi\)
\(380\) 0 0
\(381\) 21.7276 21.7276i 1.11314 1.11314i
\(382\) 16.0888i 0.823172i
\(383\) 24.7752i 1.26595i 0.774172 + 0.632976i \(0.218167\pi\)
−0.774172 + 0.632976i \(0.781833\pi\)
\(384\) −46.2596 + 46.2596i −2.36067 + 2.36067i
\(385\) 0 0
\(386\) −24.7276 24.7276i −1.25860 1.25860i
\(387\) −17.3385 −0.881363
\(388\) −24.0705 24.0705i −1.22199 1.22199i
\(389\) 23.6971i 1.20149i −0.799440 0.600747i \(-0.794870\pi\)
0.799440 0.600747i \(-0.205130\pi\)
\(390\) 0 0
\(391\) −0.325954 1.50158i −0.0164842 0.0759380i
\(392\) 28.1000 1.41926
\(393\) 62.1013i 3.13260i
\(394\) 1.46682 + 1.46682i 0.0738973 + 0.0738973i
\(395\) 0 0
\(396\) −9.53201 9.53201i −0.479002 0.479002i
\(397\) −19.5964 + 19.5964i −0.983516 + 0.983516i −0.999866 0.0163500i \(-0.994795\pi\)
0.0163500 + 0.999866i \(0.494795\pi\)
\(398\) 22.4418 22.4418i 1.12490 1.12490i
\(399\) 2.77598i 0.138973i
\(400\) 0 0
\(401\) −21.5972 + 21.5972i −1.07851 + 1.07851i −0.0818697 + 0.996643i \(0.526089\pi\)
−0.996643 + 0.0818697i \(0.973911\pi\)
\(402\) 61.2759 61.2759i 3.05616 3.05616i
\(403\) 4.06251 + 4.06251i 0.202368 + 0.202368i
\(404\) 26.6308 1.32493
\(405\) 0 0
\(406\) 3.67603i 0.182438i
\(407\) 3.00092 0.148750
\(408\) −11.1533 51.3799i −0.552168 2.54368i
\(409\) −5.90321 −0.291895 −0.145947 0.989292i \(-0.546623\pi\)
−0.145947 + 0.989292i \(0.546623\pi\)
\(410\) 0 0
\(411\) 10.3880 + 10.3880i 0.512402 + 0.512402i
\(412\) −35.1837 −1.73337
\(413\) 0.933353 + 0.933353i 0.0459273 + 0.0459273i
\(414\) −4.37120 + 4.37120i −0.214833 + 0.214833i
\(415\) 0 0
\(416\) 5.30601i 0.260148i
\(417\) 16.5549i 0.810699i
\(418\) 3.54301 3.54301i 0.173294 0.173294i
\(419\) −22.9716 + 22.9716i −1.12223 + 1.12223i −0.130829 + 0.991405i \(0.541764\pi\)
−0.991405 + 0.130829i \(0.958236\pi\)
\(420\) 0 0
\(421\) 30.1156 1.46774 0.733872 0.679288i \(-0.237711\pi\)
0.733872 + 0.679288i \(0.237711\pi\)
\(422\) −30.0195 30.0195i −1.46133 1.46133i
\(423\) 46.8507i 2.27796i
\(424\) −23.9368 −1.16247
\(425\) 0 0
\(426\) 53.9220 2.61253
\(427\) 1.24447i 0.0602242i
\(428\) −28.1678 28.1678i −1.36154 1.36154i
\(429\) 3.25761 0.157279
\(430\) 0 0
\(431\) −5.88641 + 5.88641i −0.283538 + 0.283538i −0.834518 0.550980i \(-0.814254\pi\)
0.550980 + 0.834518i \(0.314254\pi\)
\(432\) −19.9000 + 19.9000i −0.957440 + 0.957440i
\(433\) 13.5795i 0.652591i 0.945268 + 0.326295i \(0.105800\pi\)
−0.945268 + 0.326295i \(0.894200\pi\)
\(434\) 1.53318i 0.0735950i
\(435\) 0 0
\(436\) −36.7612 + 36.7612i −1.76054 + 1.76054i
\(437\) −1.05406 1.05406i −0.0504227 0.0504227i
\(438\) 8.92260 0.426338
\(439\) −14.4048 14.4048i −0.687503 0.687503i 0.274177 0.961679i \(-0.411595\pi\)
−0.961679 + 0.274177i \(0.911595\pi\)
\(440\) 0 0
\(441\) −48.3248 −2.30118
\(442\) 16.2769 + 10.4707i 0.774211 + 0.498039i
\(443\) −2.45360 −0.116574 −0.0582871 0.998300i \(-0.518564\pi\)
−0.0582871 + 0.998300i \(0.518564\pi\)
\(444\) 66.6160i 3.16145i
\(445\) 0 0
\(446\) −4.69399 −0.222267
\(447\) −19.5012 19.5012i −0.922376 0.922376i
\(448\) 1.70362 1.70362i 0.0804884 0.0804884i
\(449\) −2.26076 + 2.26076i −0.106692 + 0.106692i −0.758438 0.651746i \(-0.774037\pi\)
0.651746 + 0.758438i \(0.274037\pi\)
\(450\) 0 0
\(451\) 0.418422i 0.0197027i
\(452\) 18.7786 18.7786i 0.883269 0.883269i
\(453\) 35.4745 35.4745i 1.66674 1.66674i
\(454\) −20.1776 20.1776i −0.946982 0.946982i
\(455\) 0 0
\(456\) −36.0672 36.0672i −1.68900 1.68900i
\(457\) 30.1803i 1.41177i 0.708325 + 0.705887i \(0.249451\pi\)
−0.708325 + 0.705887i \(0.750549\pi\)
\(458\) −22.2061 −1.03762
\(459\) 10.9032 + 50.2280i 0.508918 + 2.34444i
\(460\) 0 0
\(461\) 5.41527i 0.252214i −0.992017 0.126107i \(-0.959752\pi\)
0.992017 0.126107i \(-0.0402483\pi\)
\(462\) 0.614707 + 0.614707i 0.0285987 + 0.0285987i
\(463\) −15.7574 −0.732307 −0.366153 0.930555i \(-0.619325\pi\)
−0.366153 + 0.930555i \(0.619325\pi\)
\(464\) −11.1788 11.1788i −0.518962 0.518962i
\(465\) 0 0
\(466\) 43.5340 43.5340i 2.01667 2.01667i
\(467\) 10.7690i 0.498331i −0.968461 0.249166i \(-0.919844\pi\)
0.968461 0.249166i \(-0.0801563\pi\)
\(468\) 50.5144i 2.33503i
\(469\) −1.79079 + 1.79079i −0.0826910 + 0.0826910i
\(470\) 0 0
\(471\) 22.4668 + 22.4668i 1.03522 + 1.03522i
\(472\) 24.2534 1.11635
\(473\) 0.925824 + 0.925824i 0.0425695 + 0.0425695i
\(474\) 50.6644i 2.32709i
\(475\) 0 0
\(476\) 0.710788 + 3.27440i 0.0325789 + 0.150082i
\(477\) 41.1652 1.88483
\(478\) 69.8949i 3.19692i
\(479\) −26.0988 26.0988i −1.19248 1.19248i −0.976368 0.216116i \(-0.930661\pi\)
−0.216116 0.976368i \(-0.569339\pi\)
\(480\) 0 0
\(481\) 7.95160 + 7.95160i 0.362562 + 0.362562i
\(482\) −14.3173 + 14.3173i −0.652133 + 0.652133i
\(483\) 0.182879 0.182879i 0.00832127 0.00832127i
\(484\) 39.6160i 1.80073i
\(485\) 0 0
\(486\) 35.2112 35.2112i 1.59721 1.59721i
\(487\) −27.0987 + 27.0987i −1.22796 + 1.22796i −0.263226 + 0.964734i \(0.584786\pi\)
−0.964734 + 0.263226i \(0.915214\pi\)
\(488\) 16.1689 + 16.1689i 0.731932 + 0.731932i
\(489\) 30.2460 1.36777
\(490\) 0 0
\(491\) 38.0336i 1.71643i −0.513289 0.858216i \(-0.671573\pi\)
0.513289 0.858216i \(-0.328427\pi\)
\(492\) −9.28836 −0.418752
\(493\) −28.2154 + 6.12485i −1.27076 + 0.275849i
\(494\) 18.7760 0.844771
\(495\) 0 0
\(496\) 4.66239 + 4.66239i 0.209348 + 0.209348i
\(497\) −1.57587 −0.0706875
\(498\) 32.5613 + 32.5613i 1.45910 + 1.45910i
\(499\) −6.58041 + 6.58041i −0.294579 + 0.294579i −0.838886 0.544307i \(-0.816793\pi\)
0.544307 + 0.838886i \(0.316793\pi\)
\(500\) 0 0
\(501\) 16.8580i 0.753158i
\(502\) 4.23033i 0.188809i
\(503\) −1.10919 + 1.10919i −0.0494565 + 0.0494565i −0.731403 0.681946i \(-0.761134\pi\)
0.681946 + 0.731403i \(0.261134\pi\)
\(504\) 4.37120 4.37120i 0.194709 0.194709i
\(505\) 0 0
\(506\) 0.466819 0.0207526
\(507\) −20.3667 20.3667i −0.904516 0.904516i
\(508\) 35.9812i 1.59641i
\(509\) 24.4247 1.08261 0.541304 0.840827i \(-0.317931\pi\)
0.541304 + 0.840827i \(0.317931\pi\)
\(510\) 0 0
\(511\) −0.260763 −0.0115355
\(512\) 24.3410i 1.07573i
\(513\) 35.2586 + 35.2586i 1.55670 + 1.55670i
\(514\) 17.6636 0.779106
\(515\) 0 0
\(516\) 20.5520 20.5520i 0.904750 0.904750i
\(517\) 2.50169 2.50169i 0.110024 0.110024i
\(518\) 3.00092i 0.131853i
\(519\) 55.0640i 2.41704i
\(520\) 0 0
\(521\) −5.30916 + 5.30916i −0.232599 + 0.232599i −0.813776 0.581178i \(-0.802592\pi\)
0.581178 + 0.813776i \(0.302592\pi\)
\(522\) 82.1371 + 82.1371i 3.59504 + 3.59504i
\(523\) −8.98247 −0.392776 −0.196388 0.980526i \(-0.562921\pi\)
−0.196388 + 0.980526i \(0.562921\pi\)
\(524\) 51.4204 + 51.4204i 2.24631 + 2.24631i
\(525\) 0 0
\(526\) 18.3092 0.798317
\(527\) 11.7680 2.55452i 0.512620 0.111277i
\(528\) 3.73864 0.162703
\(529\) 22.8611i 0.993962i
\(530\) 0 0
\(531\) −41.7096 −1.81004
\(532\) 2.29853 + 2.29853i 0.0996541 + 0.0996541i
\(533\) 1.10870 1.10870i 0.0480233 0.0480233i
\(534\) 85.0860 85.0860i 3.68203 3.68203i
\(535\) 0 0
\(536\) 46.5340i 2.00996i
\(537\) 47.5681 47.5681i 2.05272 2.05272i
\(538\) −13.2835 + 13.2835i −0.572691 + 0.572691i
\(539\) 2.58041 + 2.58041i 0.111146 + 0.111146i
\(540\) 0 0
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) 43.1121i 1.85182i
\(543\) 45.5464 1.95458
\(544\) −9.35323 6.01679i −0.401016 0.257968i
\(545\) 0 0
\(546\) 3.25761i 0.139413i
\(547\) 1.81910 + 1.81910i 0.0777793 + 0.0777793i 0.744926 0.667147i \(-0.232485\pi\)
−0.667147 + 0.744926i \(0.732485\pi\)
\(548\) −17.2027 −0.734862
\(549\) −27.8064 27.8064i −1.18675 1.18675i
\(550\) 0 0
\(551\) −19.8064 + 19.8064i −0.843782 + 0.843782i
\(552\) 4.75214i 0.202264i
\(553\) 1.48067i 0.0629644i
\(554\) 44.8096 44.8096i 1.90378 1.90378i
\(555\) 0 0
\(556\) −13.7076 13.7076i −0.581333 0.581333i
\(557\) −21.0162 −0.890487 −0.445243 0.895410i \(-0.646883\pi\)
−0.445243 + 0.895410i \(0.646883\pi\)
\(558\) −34.2573 34.2573i −1.45023 1.45023i
\(559\) 4.90636i 0.207517i
\(560\) 0 0
\(561\) 3.69399 5.74239i 0.155961 0.242444i
\(562\) −32.8648 −1.38632
\(563\) 40.5377i 1.70846i −0.519893 0.854231i \(-0.674028\pi\)
0.519893 0.854231i \(-0.325972\pi\)
\(564\) −55.5340 55.5340i −2.33840 2.33840i
\(565\) 0 0
\(566\) −23.1956 23.1956i −0.974983 0.974983i
\(567\) −2.87317 + 2.87317i −0.120662 + 0.120662i
\(568\) −20.4746 + 20.4746i −0.859097 + 0.859097i
\(569\) 0.612010i 0.0256568i −0.999918 0.0128284i \(-0.995916\pi\)
0.999918 0.0128284i \(-0.00408352\pi\)
\(570\) 0 0
\(571\) −10.5320 + 10.5320i −0.440751 + 0.440751i −0.892264 0.451513i \(-0.850884\pi\)
0.451513 + 0.892264i \(0.350884\pi\)
\(572\) −2.69733 + 2.69733i −0.112781 + 0.112781i
\(573\) −15.0399 15.0399i −0.628302 0.628302i
\(574\) 0.418422 0.0174646
\(575\) 0 0
\(576\) 76.1312i 3.17213i
\(577\) −37.2107 −1.54910 −0.774550 0.632513i \(-0.782024\pi\)
−0.774550 + 0.632513i \(0.782024\pi\)
\(578\) 36.9146 16.8190i 1.53544 0.699576i
\(579\) −46.2311 −1.92130
\(580\) 0 0
\(581\) −0.951603 0.951603i −0.0394791 0.0394791i
\(582\) −69.3679 −2.87539
\(583\) −2.19811 2.19811i −0.0910362 0.0910362i
\(584\) −3.38799 + 3.38799i −0.140196 + 0.140196i
\(585\) 0 0
\(586\) 47.4552i 1.96035i
\(587\) 9.60470i 0.396428i −0.980159 0.198214i \(-0.936486\pi\)
0.980159 0.198214i \(-0.0635142\pi\)
\(588\) 57.2813 57.2813i 2.36224 2.36224i
\(589\) 8.26076 8.26076i 0.340379 0.340379i
\(590\) 0 0
\(591\) 2.74239 0.112807
\(592\) 9.12576 + 9.12576i 0.375067 + 0.375067i
\(593\) 16.5206i 0.678419i 0.940711 + 0.339210i \(0.110160\pi\)
−0.940711 + 0.339210i \(0.889840\pi\)
\(594\) −15.6152 −0.640698
\(595\) 0 0
\(596\) 32.2944 1.32283
\(597\) 41.9576i 1.71721i
\(598\) 1.23694 + 1.23694i 0.0505823 + 0.0505823i
\(599\) −34.8096 −1.42228 −0.711140 0.703050i \(-0.751821\pi\)
−0.711140 + 0.703050i \(0.751821\pi\)
\(600\) 0 0
\(601\) −8.26076 + 8.26076i −0.336964 + 0.336964i −0.855223 0.518260i \(-0.826580\pi\)
0.518260 + 0.855223i \(0.326580\pi\)
\(602\) −0.925824 + 0.925824i −0.0377338 + 0.0377338i
\(603\) 80.0267i 3.25894i
\(604\) 58.7464i 2.39036i
\(605\) 0 0
\(606\) 38.3732 38.3732i 1.55880 1.55880i
\(607\) 19.0421 + 19.0421i 0.772894 + 0.772894i 0.978611 0.205718i \(-0.0659528\pi\)
−0.205718 + 0.978611i \(0.565953\pi\)
\(608\) −10.7893 −0.437564
\(609\) −3.43639 3.43639i −0.139249 0.139249i
\(610\) 0 0
\(611\) 13.2576 0.536345
\(612\) −89.0450 57.2813i −3.59943 2.31546i
\(613\) 5.43522 0.219526 0.109763 0.993958i \(-0.464991\pi\)
0.109763 + 0.993958i \(0.464991\pi\)
\(614\) 35.6971i 1.44062i
\(615\) 0 0
\(616\) −0.466819 −0.0188087
\(617\) 2.47388 + 2.47388i 0.0995948 + 0.0995948i 0.755149 0.655554i \(-0.227565\pi\)
−0.655554 + 0.755149i \(0.727565\pi\)
\(618\) −50.6973 + 50.6973i −2.03934 + 2.03934i
\(619\) −8.57725 + 8.57725i −0.344749 + 0.344749i −0.858149 0.513400i \(-0.828386\pi\)
0.513400 + 0.858149i \(0.328386\pi\)
\(620\) 0 0
\(621\) 4.64560i 0.186421i
\(622\) 50.0350 50.0350i 2.00622 2.00622i
\(623\) −2.48664 + 2.48664i −0.0996250 + 0.0996250i
\(624\) 9.90636 + 9.90636i 0.396572 + 0.396572i
\(625\) 0 0
\(626\) 24.2608 + 24.2608i 0.969655 + 0.969655i
\(627\) 6.62407i 0.264540i
\(628\) −37.2054 −1.48466
\(629\) 23.0336 5.00000i 0.918409 0.199363i
\(630\) 0 0
\(631\) 12.6183i 0.502327i −0.967945 0.251164i \(-0.919187\pi\)
0.967945 0.251164i \(-0.0808132\pi\)
\(632\) −19.2377 19.2377i −0.765235 0.765235i
\(633\) −56.1250 −2.23077
\(634\) 23.2428 + 23.2428i 0.923089 + 0.923089i
\(635\) 0 0
\(636\) −48.7948 + 48.7948i −1.93484 + 1.93484i
\(637\) 13.6747i 0.541813i
\(638\) 8.77178i 0.347278i
\(639\) 35.2112 35.2112i 1.39293 1.39293i
\(640\) 0 0
\(641\) 21.3544 + 21.3544i 0.843448 + 0.843448i 0.989306 0.145857i \(-0.0465941\pi\)
−0.145857 + 0.989306i \(0.546594\pi\)
\(642\) −81.1759 −3.20376
\(643\) −13.9383 13.9383i −0.549671 0.549671i 0.376675 0.926346i \(-0.377068\pi\)
−0.926346 + 0.376675i \(0.877068\pi\)
\(644\) 0.302850i 0.0119340i
\(645\) 0 0
\(646\) 21.2912 33.0976i 0.837691 1.30221i
\(647\) −21.0418 −0.827237 −0.413618 0.910450i \(-0.635735\pi\)
−0.413618 + 0.910450i \(0.635735\pi\)
\(648\) 74.6598i 2.93291i
\(649\) 2.22718 + 2.22718i 0.0874243 + 0.0874243i
\(650\) 0 0
\(651\) 1.43323 + 1.43323i 0.0561728 + 0.0561728i
\(652\) −25.0439 + 25.0439i −0.980795 + 0.980795i
\(653\) −27.3773 + 27.3773i −1.07136 + 1.07136i −0.0741056 + 0.997250i \(0.523610\pi\)
−0.997250 + 0.0741056i \(0.976390\pi\)
\(654\) 105.941i 4.14261i
\(655\) 0 0
\(656\) 1.27242 1.27242i 0.0496796 0.0496796i
\(657\) 5.82648 5.82648i 0.227313 0.227313i
\(658\) 2.50169 + 2.50169i 0.0975262 + 0.0975262i
\(659\) 24.1577 0.941049 0.470524 0.882387i \(-0.344065\pi\)
0.470524 + 0.882387i \(0.344065\pi\)
\(660\) 0 0
\(661\) 25.7432i 1.00129i 0.865651 + 0.500647i \(0.166905\pi\)
−0.865651 + 0.500647i \(0.833095\pi\)
\(662\) 48.1155 1.87006
\(663\) 25.0038 5.42769i 0.971068 0.210794i
\(664\) −24.7276 −0.959616
\(665\) 0 0
\(666\) −67.0524 67.0524i −2.59823 2.59823i
\(667\) −2.60965 −0.101046
\(668\) 13.9585 + 13.9585i 0.540072 + 0.540072i
\(669\) −4.38799 + 4.38799i −0.169649 + 0.169649i
\(670\) 0 0
\(671\) 2.96957i 0.114639i
\(672\) 1.87193i 0.0722113i
\(673\) −7.42165 + 7.42165i −0.286084 + 0.286084i −0.835529 0.549446i \(-0.814839\pi\)
0.549446 + 0.835529i \(0.314839\pi\)
\(674\) −48.2280 + 48.2280i −1.85767 + 1.85767i
\(675\) 0 0
\(676\) 33.7276 1.29721
\(677\) −6.00183 6.00183i −0.230669 0.230669i 0.582303 0.812972i \(-0.302152\pi\)
−0.812972 + 0.582303i \(0.802152\pi\)
\(678\) 54.1173i 2.07836i
\(679\) 2.02728 0.0777998
\(680\) 0 0
\(681\) −37.7244 −1.44560
\(682\) 3.65849i 0.140091i
\(683\) −10.1044 10.1044i −0.386635 0.386635i 0.486851 0.873485i \(-0.338146\pi\)
−0.873485 + 0.486851i \(0.838146\pi\)
\(684\) −102.717 −3.92747
\(685\) 0 0
\(686\) −5.17878 + 5.17878i −0.197727 + 0.197727i
\(687\) −20.7584 + 20.7584i −0.791984 + 0.791984i
\(688\) 5.63085i 0.214674i
\(689\) 11.6488i 0.443782i
\(690\) 0 0
\(691\) −6.24081 + 6.24081i −0.237412 + 0.237412i −0.815778 0.578366i \(-0.803691\pi\)
0.578366 + 0.815778i \(0.303691\pi\)
\(692\) −45.5935 45.5935i −1.73320 1.73320i
\(693\) 0.802810 0.0304962
\(694\) −18.4532 18.4532i −0.700473 0.700473i
\(695\) 0 0
\(696\) −89.2952 −3.38472
\(697\) −0.697157 3.21161i −0.0264067 0.121648i
\(698\) −1.54053 −0.0583100
\(699\) 81.3920i 3.07853i
\(700\) 0 0
\(701\) 18.5340 0.700019 0.350010 0.936746i \(-0.386178\pi\)
0.350010 + 0.936746i \(0.386178\pi\)
\(702\) −41.3759 41.3759i −1.56163 1.56163i
\(703\) 16.1689 16.1689i 0.609822 0.609822i
\(704\) 4.06519 4.06519i 0.153213 0.153213i
\(705\) 0 0
\(706\) 34.1280i 1.28443i
\(707\) −1.12146 + 1.12146i −0.0421767 + 0.0421767i
\(708\) 49.4401 49.4401i 1.85807 1.85807i
\(709\) 18.0304 + 18.0304i 0.677147 + 0.677147i 0.959354 0.282207i \(-0.0910664\pi\)
−0.282207 + 0.959354i \(0.591066\pi\)
\(710\) 0 0
\(711\) 33.0840 + 33.0840i 1.24075 + 1.24075i
\(712\) 64.6158i 2.42158i
\(713\) 1.08842 0.0407617
\(714\) 5.74239 + 3.69399i 0.214904 + 0.138244i
\(715\) 0 0
\(716\) 78.7736i 2.94391i
\(717\) 65.3384 + 65.3384i 2.44011 + 2.44011i
\(718\) −37.4063 −1.39599
\(719\) −3.36804 3.36804i −0.125607 0.125607i 0.641509 0.767116i \(-0.278309\pi\)
−0.767116 + 0.641509i \(0.778309\pi\)
\(720\) 0 0
\(721\) 1.48163 1.48163i 0.0551787 0.0551787i
\(722\) 7.15863i 0.266417i
\(723\) 26.7678i 0.995505i
\(724\) −37.7128 + 37.7128i −1.40158 + 1.40158i
\(725\) 0 0
\(726\) −57.0840 57.0840i −2.11858 2.11858i
\(727\) 11.1858 0.414858 0.207429 0.978250i \(-0.433490\pi\)
0.207429 + 0.978250i \(0.433490\pi\)
\(728\) −1.23694 1.23694i −0.0458441 0.0458441i
\(729\) 10.4216i 0.385984i
\(730\) 0 0
\(731\) 8.64875 + 5.56361i 0.319886 + 0.205778i
\(732\) 65.9201 2.43648
\(733\) 26.2804i 0.970687i 0.874324 + 0.485344i \(0.161305\pi\)
−0.874324 + 0.485344i \(0.838695\pi\)
\(734\) −36.9536 36.9536i −1.36398 1.36398i
\(735\) 0 0
\(736\) −0.710788 0.710788i −0.0262000 0.0262000i
\(737\) −4.27320 + 4.27320i −0.157405 + 0.157405i
\(738\) −9.34921 + 9.34921i −0.344149 + 0.344149i
\(739\) 6.00000i 0.220714i 0.993892 + 0.110357i \(0.0351994\pi\)
−0.993892 + 0.110357i \(0.964801\pi\)
\(740\) 0 0
\(741\) 17.5520 17.5520i 0.644787 0.644787i
\(742\) 2.19811 2.19811i 0.0806950 0.0806950i
\(743\) 24.0700 + 24.0700i 0.883042 + 0.883042i 0.993843 0.110800i \(-0.0353415\pi\)
−0.110800 + 0.993843i \(0.535341\pi\)
\(744\) 37.2428 1.36539
\(745\) 0 0
\(746\) 15.5308i 0.568624i
\(747\) 42.5252 1.55591
\(748\) 1.69609 + 7.81341i 0.0620152 + 0.285686i
\(749\) 2.37237 0.0866844
\(750\) 0 0
\(751\) −9.22285 9.22285i −0.336547 0.336547i 0.518519 0.855066i \(-0.326483\pi\)
−0.855066 + 0.518519i \(0.826483\pi\)
\(752\) 15.2153 0.554844
\(753\) −3.95455 3.95455i −0.144112 0.144112i
\(754\) 23.2428 23.2428i 0.846453 0.846453i
\(755\) 0 0
\(756\) 10.1304i 0.368438i
\(757\) 31.8716i 1.15839i 0.815188 + 0.579197i \(0.196634\pi\)
−0.815188 + 0.579197i \(0.803366\pi\)
\(758\) −12.7013 + 12.7013i −0.461332 + 0.461332i
\(759\) 0.436387 0.436387i 0.0158398 0.0158398i
\(760\) 0 0
\(761\) 18.7549 0.679863 0.339932 0.940450i \(-0.389596\pi\)
0.339932 + 0.940450i \(0.389596\pi\)
\(762\) 51.8466 + 51.8466i 1.87820 + 1.87820i
\(763\) 3.09612i 0.112087i
\(764\) 24.9064 0.901081
\(765\) 0 0
\(766\) −59.1187 −2.13605
\(767\) 11.8028i 0.426175i
\(768\) −61.5267 61.5267i −2.22015 2.22015i
\(769\) 47.7916 1.72341 0.861705 0.507410i \(-0.169397\pi\)
0.861705 + 0.507410i \(0.169397\pi\)
\(770\) 0 0
\(771\) 16.5121 16.5121i 0.594667 0.594667i
\(772\) 38.2798 38.2798i 1.37772 1.37772i
\(773\) 28.3286i 1.01891i 0.860497 + 0.509455i \(0.170153\pi\)
−0.860497 + 0.509455i \(0.829847\pi\)
\(774\) 41.3732i 1.48713i
\(775\) 0 0
\(776\) 26.3396 26.3396i 0.945536 0.945536i
\(777\) 2.80528 + 2.80528i 0.100639 + 0.100639i
\(778\) 56.5464 2.02729
\(779\) −2.25445 2.25445i −0.0807742 0.0807742i
\(780\) 0 0
\(781\) −3.76036 −0.134556
\(782\) 3.58308 0.777794i 0.128131 0.0278139i
\(783\) 87.2932 3.11961
\(784\) 15.6940i 0.560500i
\(785\) 0 0
\(786\) 148.187 5.28565
\(787\) −29.9191 29.9191i −1.06650 1.06650i −0.997625 0.0688738i \(-0.978059\pi\)
−0.0688738 0.997625i \(-0.521941\pi\)
\(788\) −2.27072 + 2.27072i −0.0808912 + 0.0808912i
\(789\) 17.1156 17.1156i 0.609330 0.609330i
\(790\) 0 0
\(791\) 1.58158i 0.0562344i
\(792\) 10.4306 10.4306i 0.370635 0.370635i
\(793\) −7.86854 + 7.86854i −0.279420 + 0.279420i
\(794\) −46.7612 46.7612i −1.65949 1.65949i
\(795\) 0 0
\(796\) 34.7412 + 34.7412i 1.23137 + 1.23137i
\(797\) 54.1578i 1.91837i −0.282780 0.959185i \(-0.591257\pi\)
0.282780 0.959185i \(-0.408743\pi\)
\(798\) 6.62407 0.234489
\(799\) 15.0336 23.3700i 0.531850 0.826772i
\(800\) 0 0
\(801\) 111.123i 3.92633i
\(802\) −51.5354 51.5354i −1.81978 1.81978i
\(803\) −0.622235 −0.0219582
\(804\) 94.8588 + 94.8588i 3.34541 + 3.34541i
\(805\) 0 0
\(806\) −9.69399 + 9.69399i −0.341456 + 0.341456i
\(807\) 24.8350i 0.874234i
\(808\) 29.1413i 1.02519i
\(809\) −21.9064 + 21.9064i −0.770187 + 0.770187i −0.978139 0.207952i \(-0.933320\pi\)
0.207952 + 0.978139i \(0.433320\pi\)
\(810\) 0 0
\(811\) −2.93481 2.93481i −0.103055 0.103055i 0.653699 0.756754i \(-0.273216\pi\)
−0.756754 + 0.653699i \(0.773216\pi\)
\(812\) 5.69071 0.199705
\(813\) 40.3016 + 40.3016i 1.41344 + 1.41344i
\(814\) 7.16081i 0.250986i
\(815\) 0 0
\(816\) 28.6960 6.22916i 1.00456 0.218064i
\(817\) 9.97667 0.349039
\(818\) 14.0863i 0.492515i
\(819\) 2.12723 + 2.12723i 0.0743313 + 0.0743313i
\(820\) 0 0
\(821\) −0.996845 0.996845i −0.0347901 0.0347901i 0.689498 0.724288i \(-0.257831\pi\)
−0.724288 + 0.689498i \(0.757831\pi\)
\(822\) −24.7879 + 24.7879i −0.864578 + 0.864578i
\(823\) 14.2899 14.2899i 0.498116 0.498116i −0.412735 0.910851i \(-0.635427\pi\)
0.910851 + 0.412735i \(0.135427\pi\)
\(824\) 38.5004i 1.34123i
\(825\) 0 0
\(826\) −2.22718 + 2.22718i −0.0774934 + 0.0774934i
\(827\) 8.03163 8.03163i 0.279287 0.279287i −0.553537 0.832824i \(-0.686722\pi\)
0.832824 + 0.553537i \(0.186722\pi\)
\(828\) −6.76687 6.76687i −0.235165 0.235165i
\(829\) 10.9336 0.379741 0.189870 0.981809i \(-0.439193\pi\)
0.189870 + 0.981809i \(0.439193\pi\)
\(830\) 0 0
\(831\) 83.7768i 2.90618i
\(832\) 21.5433 0.746879
\(833\) 24.1053 + 15.5066i 0.835200 + 0.537272i
\(834\) −39.5036 −1.36790
\(835\) 0 0
\(836\) 5.48478 + 5.48478i 0.189695 + 0.189695i
\(837\) −36.4078 −1.25844
\(838\) −54.8149 54.8149i −1.89355 1.89355i
\(839\) −27.4836 + 27.4836i −0.948840 + 0.948840i −0.998754 0.0499138i \(-0.984105\pi\)
0.0499138 + 0.998754i \(0.484105\pi\)
\(840\) 0 0
\(841\) 20.0367i 0.690922i
\(842\) 71.8621i 2.47653i
\(843\) −30.7224 + 30.7224i −1.05813 + 1.05813i
\(844\) 46.4720 46.4720i 1.59963 1.59963i
\(845\) 0 0
\(846\) −111.796 −3.84361
\(847\) 1.66828 + 1.66828i 0.0573228 + 0.0573228i
\(848\) 13.3688i 0.459088i
\(849\) −43.3669 −1.48835
\(850\) 0 0
\(851\) 2.13038 0.0730285
\(852\) 83.4745i 2.85979i
\(853\) 22.6454 + 22.6454i 0.775365 + 0.775365i 0.979039 0.203674i \(-0.0652882\pi\)
−0.203674 + 0.979039i \(0.565288\pi\)
\(854\) −2.96957 −0.101617
\(855\) 0 0
\(856\) 30.8232 30.8232i 1.05352 1.05352i
\(857\) 18.1563 18.1563i 0.620208 0.620208i −0.325376 0.945585i \(-0.605491\pi\)
0.945585 + 0.325376i \(0.105491\pi\)
\(858\) 7.77333i 0.265377i
\(859\) 38.7065i 1.32065i −0.750981 0.660324i \(-0.770419\pi\)
0.750981 0.660324i \(-0.229581\pi\)
\(860\) 0 0
\(861\) 0.391145 0.391145i 0.0133302 0.0133302i
\(862\) −14.0462 14.0462i −0.478416 0.478416i
\(863\) −29.5881 −1.00719 −0.503596 0.863939i \(-0.667990\pi\)
−0.503596 + 0.863939i \(0.667990\pi\)
\(864\) 23.7760 + 23.7760i 0.808875 + 0.808875i
\(865\) 0 0
\(866\) −32.4036 −1.10112
\(867\) 18.7856 50.2306i 0.637992 1.70592i
\(868\) −2.37346 −0.0805603
\(869\) 3.53318i 0.119855i
\(870\) 0 0
\(871\) −22.6456 −0.767317
\(872\) −40.2266 40.2266i −1.36225 1.36225i
\(873\) −45.2974 + 45.2974i −1.53309 + 1.53309i
\(874\) 2.51522 2.51522i 0.0850785 0.0850785i
\(875\) 0 0
\(876\) 13.8127i 0.466689i
\(877\) −18.7380 + 18.7380i −0.632737 + 0.632737i −0.948754 0.316017i \(-0.897654\pi\)
0.316017 + 0.948754i \(0.397654\pi\)
\(878\) 34.3728 34.3728i 1.16003 1.16003i
\(879\) 44.3615 + 44.3615i 1.49628 + 1.49628i
\(880\) 0 0
\(881\) −7.77282 7.77282i −0.261873 0.261873i 0.563942 0.825815i \(-0.309284\pi\)
−0.825815 + 0.563942i \(0.809284\pi\)
\(882\) 115.313i 3.88279i
\(883\) 56.2202 1.89196 0.945980 0.324225i \(-0.105104\pi\)
0.945980 + 0.324225i \(0.105104\pi\)
\(884\) −16.2092 + 25.1976i −0.545175 + 0.847486i
\(885\) 0 0
\(886\) 5.85481i 0.196696i
\(887\) 4.87988 + 4.87988i 0.163850 + 0.163850i 0.784270 0.620420i \(-0.213038\pi\)
−0.620420 + 0.784270i \(0.713038\pi\)
\(888\) 72.8958 2.44622
\(889\) −1.51522 1.51522i −0.0508187 0.0508187i
\(890\) 0 0
\(891\) −6.85598 + 6.85598i −0.229684 + 0.229684i
\(892\) 7.26658i 0.243303i
\(893\) 26.9582i 0.902122i
\(894\) 46.5340 46.5340i 1.55633 1.55633i
\(895\) 0 0
\(896\) 3.22600 + 3.22600i 0.107773 + 0.107773i
\(897\) 2.31261 0.0772158
\(898\) −5.39465 5.39465i −0.180022 0.180022i
\(899\) 20.4520i 0.682113i
\(900\) 0 0
\(901\) −20.5340 13.2092i −0.684087 0.440063i
\(902\) 0.998442 0.0332445
\(903\) 1.73094i 0.0576020i
\(904\) 20.5488 + 20.5488i 0.683443 + 0.683443i
\(905\) 0 0
\(906\) 84.6496 + 84.6496i 2.81229 + 2.81229i
\(907\) 22.0708 22.0708i 0.732849 0.732849i −0.238334 0.971183i \(-0.576601\pi\)
0.971183 + 0.238334i \(0.0766014\pi\)
\(908\) 31.2361 31.2361i 1.03661 1.03661i
\(909\) 50.1156i 1.66223i
\(910\) 0 0
\(911\) 30.0472 30.0472i 0.995509 0.995509i −0.00448095 0.999990i \(-0.501426\pi\)
0.999990 + 0.00448095i \(0.00142634\pi\)
\(912\) 20.1437 20.1437i 0.667026 0.667026i
\(913\) −2.27072 2.27072i −0.0751500 0.0751500i
\(914\) −72.0164 −2.38209
\(915\) 0 0
\(916\) 34.3763i 1.13583i
\(917\) −4.33076 −0.143014
\(918\) −119.854 + 26.0173i −3.95579 + 0.858700i
\(919\) 29.1312 0.960949 0.480475 0.877009i \(-0.340464\pi\)
0.480475 + 0.877009i \(0.340464\pi\)
\(920\) 0 0
\(921\) 33.3700 + 33.3700i 1.09958 + 1.09958i
\(922\) 12.9220 0.425562
\(923\) −9.96391 9.96391i −0.327966 0.327966i
\(924\) −0.951603 + 0.951603i −0.0313054 + 0.0313054i
\(925\) 0 0
\(926\) 37.6004i 1.23562i
\(927\) 66.2109i 2.17465i
\(928\) −13.3561 + 13.3561i −0.438435 + 0.438435i
\(929\) −0.921171 + 0.921171i −0.0302226 + 0.0302226i −0.722057 0.691834i \(-0.756803\pi\)
0.691834 + 0.722057i \(0.256803\pi\)
\(930\) 0 0
\(931\) 27.8064 0.911318
\(932\) 67.3932 + 67.3932i 2.20754 + 2.20754i
\(933\) 93.5463i 3.06257i
\(934\) 25.6971 0.840836
\(935\) 0 0
\(936\) 55.2764 1.80677
\(937\) 9.43458i 0.308214i −0.988054 0.154107i \(-0.950750\pi\)
0.988054 0.154107i \(-0.0492501\pi\)
\(938\) −4.27320 4.27320i −0.139525 0.139525i
\(939\) 45.3584 1.48021
\(940\) 0 0
\(941\) −17.8033 + 17.8033i −0.580370 + 0.580370i −0.935005 0.354635i \(-0.884605\pi\)
0.354635 + 0.935005i \(0.384605\pi\)
\(942\) −53.6105 + 53.6105i −1.74673 + 1.74673i
\(943\) 0.297042i 0.00967302i
\(944\) 13.5456i 0.440873i
\(945\) 0 0
\(946\) −2.20921 + 2.20921i −0.0718276 + 0.0718276i
\(947\) 19.5564 + 19.5564i 0.635496 + 0.635496i 0.949441 0.313945i \(-0.101651\pi\)
−0.313945 + 0.949441i \(0.601651\pi\)
\(948\) −78.4315 −2.54734
\(949\) −1.64875 1.64875i −0.0535208 0.0535208i
\(950\) 0 0
\(951\) 43.4552 1.40913
\(952\) −3.58308 + 0.777794i −0.116128 + 0.0252085i
\(953\) 16.0279 0.519195 0.259598 0.965717i \(-0.416410\pi\)
0.259598 + 0.965717i \(0.416410\pi\)
\(954\) 98.2288i 3.18027i
\(955\) 0 0
\(956\) −108.202 −3.49949
\(957\) −8.19994 8.19994i −0.265066 0.265066i
\(958\) 62.2771 62.2771i 2.01208 2.01208i
\(959\) 0.724427 0.724427i 0.0233930 0.0233930i
\(960\) 0 0
\(961\) 22.4700i 0.724838i
\(962\) −18.9742 + 18.9742i −0.611752 + 0.611752i
\(963\) −53.0081 + 53.0081i −1.70816 + 1.70816i
\(964\) −22.1640 22.1640i −0.713853 0.713853i
\(965\) 0 0
\(966\) 0.436387 + 0.436387i 0.0140405 + 0.0140405i
\(967\) 10.9849i 0.353252i 0.984278 + 0.176626i \(0.0565183\pi\)
−0.984278 + 0.176626i \(0.943482\pi\)
\(968\) 43.3506 1.39334
\(969\) −11.0367 50.8432i −0.354551 1.63332i
\(970\) 0 0
\(971\) 32.2944i 1.03638i −0.855267 0.518188i \(-0.826607\pi\)
0.855267 0.518188i \(-0.173393\pi\)
\(972\) 54.5090 + 54.5090i 1.74838 + 1.74838i
\(973\) 1.15449 0.0370113
\(974\) −64.6632 64.6632i −2.07194 2.07194i
\(975\) 0 0
\(976\) −9.03043 + 9.03043i −0.289057 + 0.289057i
\(977\) 2.59459i 0.0830084i 0.999138 + 0.0415042i \(0.0132150\pi\)
−0.999138 + 0.0415042i \(0.986785\pi\)
\(978\) 72.1732i 2.30784i
\(979\) −5.93364 + 5.93364i −0.189640 + 0.189640i
\(980\) 0 0
\(981\) 69.1796 + 69.1796i 2.20873 + 2.20873i
\(982\) 90.7561 2.89614
\(983\) 6.79991 + 6.79991i 0.216883 + 0.216883i 0.807184 0.590300i \(-0.200991\pi\)
−0.590300 + 0.807184i \(0.700991\pi\)
\(984\) 10.1640i 0.324015i
\(985\) 0 0
\(986\) −14.6152 67.3279i −0.465442 2.14416i
\(987\) 4.67721 0.148877
\(988\) 29.0663i 0.924723i
\(989\) 0.657252 + 0.657252i 0.0208994 + 0.0208994i
\(990\) 0 0
\(991\) 19.9864 + 19.9864i 0.634888 + 0.634888i 0.949290 0.314402i \(-0.101804\pi\)
−0.314402 + 0.949290i \(0.601804\pi\)
\(992\) 5.57049 5.57049i 0.176863 0.176863i
\(993\) 44.9788 44.9788i 1.42736 1.42736i
\(994\) 3.76036i 0.119271i
\(995\) 0 0
\(996\) −50.4068 + 50.4068i −1.59720 + 1.59720i
\(997\) 2.36593 2.36593i 0.0749297 0.0749297i −0.668649 0.743578i \(-0.733127\pi\)
0.743578 + 0.668649i \(0.233127\pi\)
\(998\) −15.7022 15.7022i −0.497045 0.497045i
\(999\) −71.2616 −2.25462
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.e.d.251.6 12
5.2 odd 4 85.2.j.c.64.1 yes 12
5.3 odd 4 85.2.j.c.64.6 yes 12
5.4 even 2 inner 425.2.e.d.251.1 12
15.2 even 4 765.2.t.e.64.6 12
15.8 even 4 765.2.t.e.64.1 12
17.2 even 8 7225.2.a.bp.1.2 12
17.4 even 4 inner 425.2.e.d.276.1 12
17.15 even 8 7225.2.a.bp.1.1 12
85.2 odd 8 1445.2.b.f.579.1 12
85.4 even 4 inner 425.2.e.d.276.6 12
85.19 even 8 7225.2.a.bp.1.11 12
85.32 odd 8 1445.2.b.f.579.2 12
85.38 odd 4 85.2.j.c.4.1 12
85.49 even 8 7225.2.a.bp.1.12 12
85.53 odd 8 1445.2.b.f.579.12 12
85.72 odd 4 85.2.j.c.4.6 yes 12
85.83 odd 8 1445.2.b.f.579.11 12
255.38 even 4 765.2.t.e.514.6 12
255.242 even 4 765.2.t.e.514.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.1 12 85.38 odd 4
85.2.j.c.4.6 yes 12 85.72 odd 4
85.2.j.c.64.1 yes 12 5.2 odd 4
85.2.j.c.64.6 yes 12 5.3 odd 4
425.2.e.d.251.1 12 5.4 even 2 inner
425.2.e.d.251.6 12 1.1 even 1 trivial
425.2.e.d.276.1 12 17.4 even 4 inner
425.2.e.d.276.6 12 85.4 even 4 inner
765.2.t.e.64.1 12 15.8 even 4
765.2.t.e.64.6 12 15.2 even 4
765.2.t.e.514.1 12 255.242 even 4
765.2.t.e.514.6 12 255.38 even 4
1445.2.b.f.579.1 12 85.2 odd 8
1445.2.b.f.579.2 12 85.32 odd 8
1445.2.b.f.579.11 12 85.83 odd 8
1445.2.b.f.579.12 12 85.53 odd 8
7225.2.a.bp.1.1 12 17.15 even 8
7225.2.a.bp.1.2 12 17.2 even 8
7225.2.a.bp.1.11 12 85.19 even 8
7225.2.a.bp.1.12 12 85.49 even 8