L(s) = 1 | − 0.232i·2-s + (−1.69 − 1.69i)3-s + 1.94·4-s + (−0.393 + 0.393i)6-s + (1.46 − 1.46i)7-s − 0.917i·8-s + 2.73i·9-s + (−0.339 + 0.339i)11-s + (−3.29 − 3.29i)12-s + 4.07·13-s + (−0.339 − 0.339i)14-s + 3.67·16-s + (−1.69 − 3.75i)17-s + 0.635·18-s − 4i·19-s + ⋯ |
L(s) = 1 | − 0.164i·2-s + (−0.977 − 0.977i)3-s + 0.972·4-s + (−0.160 + 0.160i)6-s + (0.552 − 0.552i)7-s − 0.324i·8-s + 0.910i·9-s + (−0.102 + 0.102i)11-s + (−0.951 − 0.951i)12-s + 1.12·13-s + (−0.0907 − 0.0907i)14-s + 0.919·16-s + (−0.410 − 0.911i)17-s + 0.149·18-s − 0.917i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.237 + 0.971i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.237 + 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.802086 - 1.02179i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.802086 - 1.02179i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (1.69 + 3.75i)T \) |
good | 2 | \( 1 + 0.232iT - 2T^{2} \) |
| 3 | \( 1 + (1.69 + 1.69i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1.46 + 1.46i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.339 - 0.339i)T - 11iT^{2} \) |
| 13 | \( 1 - 4.07T + 13T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 + (5.76 - 5.76i)T - 23iT^{2} \) |
| 29 | \( 1 + (0.732 + 0.732i)T + 29iT^{2} \) |
| 31 | \( 1 + (4.28 + 4.28i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.917 - 0.917i)T + 37iT^{2} \) |
| 41 | \( 1 + (-7.62 + 7.62i)T - 41iT^{2} \) |
| 43 | \( 1 + 7.45iT - 43T^{2} \) |
| 47 | \( 1 - 3.60T + 47T^{2} \) |
| 53 | \( 1 - 6.14iT - 53T^{2} \) |
| 59 | \( 1 - 6iT - 59T^{2} \) |
| 61 | \( 1 + (4 - 4i)T - 61iT^{2} \) |
| 67 | \( 1 + 3.14T + 67T^{2} \) |
| 71 | \( 1 + (-1.28 - 1.28i)T + 71iT^{2} \) |
| 73 | \( 1 + (-8.60 - 8.60i)T + 73iT^{2} \) |
| 79 | \( 1 + (7.23 - 7.23i)T - 79iT^{2} \) |
| 83 | \( 1 - 2.23iT - 83T^{2} \) |
| 89 | \( 1 - 9.37T + 89T^{2} \) |
| 97 | \( 1 + (-11.8 - 11.8i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23966951564976349498906113893, −10.47964968784816312703609986654, −9.118323897474771396729760944870, −7.60765738659640820245439029484, −7.27562301236087894474176430267, −6.21995620767183449296280769303, −5.50697518054177723921838070692, −3.91905086871856876772847291992, −2.20471432363156871625164236233, −0.983179768358885066472421373398,
1.89220440696529597323553311509, 3.62208818631898755271731035891, 4.78091892699501123480462057498, 6.03037948177202168929483933623, 6.17379674605973367786725119080, 7.84649546921267388535406417350, 8.623218250293102675575474382135, 9.990324841092045557787515993183, 10.77253310373154961513524145683, 11.18433065918466163742428152268