Properties

Label 425.2.e.d.251.3
Level $425$
Weight $2$
Character 425.251
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(251,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 188x^{8} + 572x^{6} + 776x^{4} + 464x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 251.3
Root \(0.767611i\) of defining polynomial
Character \(\chi\) \(=\) 425.251
Dual form 425.2.e.d.276.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.232389i q^{2} +(-1.69306 - 1.69306i) q^{3} +1.94600 q^{4} +(-0.393449 + 0.393449i) q^{6} +(1.46067 - 1.46067i) q^{7} -0.917007i q^{8} +2.73289i q^{9} +(-0.339444 + 0.339444i) q^{11} +(-3.29468 - 3.29468i) q^{12} +4.07073 q^{13} +(-0.339444 - 0.339444i) q^{14} +3.67889 q^{16} +(-1.69306 - 3.75946i) q^{17} +0.635095 q^{18} -4.00000i q^{19} -4.94600 q^{21} +(0.0788831 + 0.0788831i) q^{22} +(-5.76379 + 5.76379i) q^{23} +(-1.55255 + 1.55255i) q^{24} -0.945995i q^{26} +(-0.452229 + 0.452229i) q^{27} +(2.84245 - 2.84245i) q^{28} +(-0.732893 - 0.732893i) q^{29} +(-4.28544 - 4.28544i) q^{31} -2.68895i q^{32} +1.14940 q^{33} +(-0.873659 + 0.393449i) q^{34} +5.31820i q^{36} +(0.917007 + 0.917007i) q^{37} -0.929557 q^{38} +(-6.89199 - 6.89199i) q^{39} +(7.62488 - 7.62488i) q^{41} +1.14940i q^{42} -7.45685i q^{43} +(-0.660556 + 0.660556i) q^{44} +(1.33944 + 1.33944i) q^{46} +3.60596 q^{47} +(-6.22857 - 6.22857i) q^{48} +2.73289i q^{49} +(-3.49854 + 9.23143i) q^{51} +7.92163 q^{52} +6.14969i q^{53} +(0.105093 + 0.105093i) q^{54} +(-1.33944 - 1.33944i) q^{56} +(-6.77223 + 6.77223i) q^{57} +(-0.170316 + 0.170316i) q^{58} +6.00000i q^{59} +(-4.00000 + 4.00000i) q^{61} +(-0.995890 + 0.995890i) q^{62} +(3.99185 + 3.99185i) q^{63} +6.73289 q^{64} -0.267107i q^{66} -3.14118 q^{67} +(-3.29468 - 7.31589i) q^{68} +19.5169 q^{69} +(1.28544 + 1.28544i) q^{71} +2.50608 q^{72} +(8.60625 + 8.60625i) q^{73} +(0.213103 - 0.213103i) q^{74} -7.78398i q^{76} +0.991630i q^{77} +(-1.60162 + 1.60162i) q^{78} +(-7.23143 + 7.23143i) q^{79} +9.72998 q^{81} +(-1.77194 - 1.77194i) q^{82} +2.23672i q^{83} -9.62488 q^{84} -1.73289 q^{86} +2.48166i q^{87} +(0.311272 + 0.311272i) q^{88} +9.37220 q^{89} +(5.94600 - 5.94600i) q^{91} +(-11.2163 + 11.2163i) q^{92} +14.5110i q^{93} -0.837986i q^{94} +(-4.55255 + 4.55255i) q^{96} +(11.8220 + 11.8220i) q^{97} +0.635095 q^{98} +(-0.927664 - 0.927664i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 20 q^{6} + 16 q^{11} + 16 q^{14} + 4 q^{16} - 24 q^{21} + 32 q^{24} - 4 q^{29} + 4 q^{31} - 12 q^{39} + 16 q^{41} - 28 q^{44} - 4 q^{46} + 44 q^{51} - 100 q^{54} + 4 q^{56} - 48 q^{61}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.232389i 0.164324i −0.996619 0.0821620i \(-0.973817\pi\)
0.996619 0.0821620i \(-0.0261825\pi\)
\(3\) −1.69306 1.69306i −0.977488 0.977488i 0.0222645 0.999752i \(-0.492912\pi\)
−0.999752 + 0.0222645i \(0.992912\pi\)
\(4\) 1.94600 0.972998
\(5\) 0 0
\(6\) −0.393449 + 0.393449i −0.160625 + 0.160625i
\(7\) 1.46067 1.46067i 0.552081 0.552081i −0.374960 0.927041i \(-0.622344\pi\)
0.927041 + 0.374960i \(0.122344\pi\)
\(8\) 0.917007i 0.324211i
\(9\) 2.73289i 0.910964i
\(10\) 0 0
\(11\) −0.339444 + 0.339444i −0.102346 + 0.102346i −0.756426 0.654080i \(-0.773056\pi\)
0.654080 + 0.756426i \(0.273056\pi\)
\(12\) −3.29468 3.29468i −0.951093 0.951093i
\(13\) 4.07073 1.12902 0.564509 0.825427i \(-0.309065\pi\)
0.564509 + 0.825427i \(0.309065\pi\)
\(14\) −0.339444 0.339444i −0.0907202 0.0907202i
\(15\) 0 0
\(16\) 3.67889 0.919722
\(17\) −1.69306 3.75946i −0.410627 0.911803i
\(18\) 0.635095 0.149693
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) −4.94600 −1.07930
\(22\) 0.0788831 + 0.0788831i 0.0168179 + 0.0168179i
\(23\) −5.76379 + 5.76379i −1.20183 + 1.20183i −0.228226 + 0.973608i \(0.573292\pi\)
−0.973608 + 0.228226i \(0.926708\pi\)
\(24\) −1.55255 + 1.55255i −0.316912 + 0.316912i
\(25\) 0 0
\(26\) 0.945995i 0.185525i
\(27\) −0.452229 + 0.452229i −0.0870314 + 0.0870314i
\(28\) 2.84245 2.84245i 0.537173 0.537173i
\(29\) −0.732893 0.732893i −0.136095 0.136095i 0.635778 0.771872i \(-0.280680\pi\)
−0.771872 + 0.635778i \(0.780680\pi\)
\(30\) 0 0
\(31\) −4.28544 4.28544i −0.769688 0.769688i 0.208364 0.978051i \(-0.433186\pi\)
−0.978051 + 0.208364i \(0.933186\pi\)
\(32\) 2.68895i 0.475343i
\(33\) 1.14940 0.200084
\(34\) −0.873659 + 0.393449i −0.149831 + 0.0674759i
\(35\) 0 0
\(36\) 5.31820i 0.886366i
\(37\) 0.917007 + 0.917007i 0.150755 + 0.150755i 0.778455 0.627700i \(-0.216004\pi\)
−0.627700 + 0.778455i \(0.716004\pi\)
\(38\) −0.929557 −0.150794
\(39\) −6.89199 6.89199i −1.10360 1.10360i
\(40\) 0 0
\(41\) 7.62488 7.62488i 1.19081 1.19081i 0.213965 0.976841i \(-0.431362\pi\)
0.976841 0.213965i \(-0.0686380\pi\)
\(42\) 1.14940i 0.177356i
\(43\) 7.45685i 1.13716i −0.822628 0.568580i \(-0.807493\pi\)
0.822628 0.568580i \(-0.192507\pi\)
\(44\) −0.660556 + 0.660556i −0.0995826 + 0.0995826i
\(45\) 0 0
\(46\) 1.33944 + 1.33944i 0.197490 + 0.197490i
\(47\) 3.60596 0.525983 0.262991 0.964798i \(-0.415291\pi\)
0.262991 + 0.964798i \(0.415291\pi\)
\(48\) −6.22857 6.22857i −0.899017 0.899017i
\(49\) 2.73289i 0.390413i
\(50\) 0 0
\(51\) −3.49854 + 9.23143i −0.489894 + 1.29266i
\(52\) 7.92163 1.09853
\(53\) 6.14969i 0.844725i 0.906427 + 0.422362i \(0.138799\pi\)
−0.906427 + 0.422362i \(0.861201\pi\)
\(54\) 0.105093 + 0.105093i 0.0143014 + 0.0143014i
\(55\) 0 0
\(56\) −1.33944 1.33944i −0.178991 0.178991i
\(57\) −6.77223 + 6.77223i −0.897004 + 0.897004i
\(58\) −0.170316 + 0.170316i −0.0223636 + 0.0223636i
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) −4.00000 + 4.00000i −0.512148 + 0.512148i −0.915184 0.403036i \(-0.867955\pi\)
0.403036 + 0.915184i \(0.367955\pi\)
\(62\) −0.995890 + 0.995890i −0.126478 + 0.126478i
\(63\) 3.99185 + 3.99185i 0.502926 + 0.502926i
\(64\) 6.73289 0.841612
\(65\) 0 0
\(66\) 0.267107i 0.0328787i
\(67\) −3.14118 −0.383756 −0.191878 0.981419i \(-0.561458\pi\)
−0.191878 + 0.981419i \(0.561458\pi\)
\(68\) −3.29468 7.31589i −0.399539 0.887183i
\(69\) 19.5169 2.34956
\(70\) 0 0
\(71\) 1.28544 + 1.28544i 0.152554 + 0.152554i 0.779257 0.626704i \(-0.215596\pi\)
−0.626704 + 0.779257i \(0.715596\pi\)
\(72\) 2.50608 0.295345
\(73\) 8.60625 + 8.60625i 1.00729 + 1.00729i 0.999973 + 0.00731179i \(0.00232744\pi\)
0.00731179 + 0.999973i \(0.497673\pi\)
\(74\) 0.213103 0.213103i 0.0247727 0.0247727i
\(75\) 0 0
\(76\) 7.78398i 0.892884i
\(77\) 0.991630i 0.113007i
\(78\) −1.60162 + 1.60162i −0.181348 + 0.181348i
\(79\) −7.23143 + 7.23143i −0.813600 + 0.813600i −0.985172 0.171572i \(-0.945115\pi\)
0.171572 + 0.985172i \(0.445115\pi\)
\(80\) 0 0
\(81\) 9.72998 1.08111
\(82\) −1.77194 1.77194i −0.195678 0.195678i
\(83\) 2.23672i 0.245512i 0.992437 + 0.122756i \(0.0391732\pi\)
−0.992437 + 0.122756i \(0.960827\pi\)
\(84\) −9.62488 −1.05016
\(85\) 0 0
\(86\) −1.73289 −0.186863
\(87\) 2.48166i 0.266062i
\(88\) 0.311272 + 0.311272i 0.0331818 + 0.0331818i
\(89\) 9.37220 0.993451 0.496726 0.867908i \(-0.334536\pi\)
0.496726 + 0.867908i \(0.334536\pi\)
\(90\) 0 0
\(91\) 5.94600 5.94600i 0.623310 0.623310i
\(92\) −11.2163 + 11.2163i −1.16938 + 1.16938i
\(93\) 14.5110i 1.50472i
\(94\) 0.837986i 0.0864316i
\(95\) 0 0
\(96\) −4.55255 + 4.55255i −0.464642 + 0.464642i
\(97\) 11.8220 + 11.8220i 1.20035 + 1.20035i 0.974061 + 0.226286i \(0.0726585\pi\)
0.226286 + 0.974061i \(0.427342\pi\)
\(98\) 0.635095 0.0641543
\(99\) −0.927664 0.927664i −0.0932337 0.0932337i
\(100\) 0 0
\(101\) −4.41178 −0.438989 −0.219494 0.975614i \(-0.570441\pi\)
−0.219494 + 0.975614i \(0.570441\pi\)
\(102\) 2.14529 + 0.813024i 0.212415 + 0.0805013i
\(103\) 17.4323 1.71766 0.858829 0.512262i \(-0.171192\pi\)
0.858829 + 0.512262i \(0.171192\pi\)
\(104\) 3.73289i 0.366040i
\(105\) 0 0
\(106\) 1.42912 0.138809
\(107\) 3.68484 + 3.68484i 0.356227 + 0.356227i 0.862420 0.506193i \(-0.168948\pi\)
−0.506193 + 0.862420i \(0.668948\pi\)
\(108\) −0.880035 + 0.880035i −0.0846814 + 0.0846814i
\(109\) 5.73289 5.73289i 0.549112 0.549112i −0.377072 0.926184i \(-0.623069\pi\)
0.926184 + 0.377072i \(0.123069\pi\)
\(110\) 0 0
\(111\) 3.10509i 0.294722i
\(112\) 5.37364 5.37364i 0.507761 0.507761i
\(113\) −2.45656 + 2.45656i −0.231094 + 0.231094i −0.813149 0.582055i \(-0.802249\pi\)
0.582055 + 0.813149i \(0.302249\pi\)
\(114\) 1.57379 + 1.57379i 0.147399 + 0.147399i
\(115\) 0 0
\(116\) −1.42621 1.42621i −0.132420 0.132420i
\(117\) 11.1249i 1.02850i
\(118\) 1.39434 0.128359
\(119\) −7.96433 3.01833i −0.730089 0.276690i
\(120\) 0 0
\(121\) 10.7696i 0.979051i
\(122\) 0.929557 + 0.929557i 0.0841582 + 0.0841582i
\(123\) −25.8187 −2.32800
\(124\) −8.33944 8.33944i −0.748904 0.748904i
\(125\) 0 0
\(126\) 0.927664 0.927664i 0.0826428 0.0826428i
\(127\) 2.98341i 0.264735i −0.991201 0.132367i \(-0.957742\pi\)
0.991201 0.132367i \(-0.0422579\pi\)
\(128\) 6.94255i 0.613640i
\(129\) −12.6249 + 12.6249i −1.11156 + 1.11156i
\(130\) 0 0
\(131\) 5.08676 + 5.08676i 0.444432 + 0.444432i 0.893499 0.449066i \(-0.148243\pi\)
−0.449066 + 0.893499i \(0.648243\pi\)
\(132\) 2.23672 0.194681
\(133\) −5.84268 5.84268i −0.506624 0.506624i
\(134\) 0.729976i 0.0630603i
\(135\) 0 0
\(136\) −3.44745 + 1.55255i −0.295617 + 0.133130i
\(137\) 0.526852 0.0450120 0.0225060 0.999747i \(-0.492836\pi\)
0.0225060 + 0.999747i \(0.492836\pi\)
\(138\) 4.53551i 0.386089i
\(139\) −12.4985 12.4985i −1.06011 1.06011i −0.998074 0.0620387i \(-0.980240\pi\)
−0.0620387 0.998074i \(-0.519760\pi\)
\(140\) 0 0
\(141\) −6.10509 6.10509i −0.514142 0.514142i
\(142\) 0.298722 0.298722i 0.0250682 0.0250682i
\(143\) −1.38179 + 1.38179i −0.115551 + 0.115551i
\(144\) 10.0540i 0.837834i
\(145\) 0 0
\(146\) 2.00000 2.00000i 0.165521 0.165521i
\(147\) 4.62695 4.62695i 0.381624 0.381624i
\(148\) 1.78449 + 1.78449i 0.146684 + 0.146684i
\(149\) −7.32111 −0.599769 −0.299884 0.953976i \(-0.596948\pi\)
−0.299884 + 0.953976i \(0.596948\pi\)
\(150\) 0 0
\(151\) 7.46579i 0.607557i −0.952743 0.303778i \(-0.901752\pi\)
0.952743 0.303778i \(-0.0982483\pi\)
\(152\) −3.66803 −0.297516
\(153\) 10.2742 4.62695i 0.830620 0.374066i
\(154\) 0.230444 0.0185697
\(155\) 0 0
\(156\) −13.4118 13.4118i −1.07380 1.07380i
\(157\) −12.4571 −0.994188 −0.497094 0.867697i \(-0.665600\pi\)
−0.497094 + 0.867697i \(0.665600\pi\)
\(158\) 1.68051 + 1.68051i 0.133694 + 0.133694i
\(159\) 10.4118 10.4118i 0.825708 0.825708i
\(160\) 0 0
\(161\) 16.8380i 1.32702i
\(162\) 2.26114i 0.177652i
\(163\) 6.05825 6.05825i 0.474519 0.474519i −0.428854 0.903374i \(-0.641083\pi\)
0.903374 + 0.428854i \(0.141083\pi\)
\(164\) 14.8380 14.8380i 1.15865 1.15865i
\(165\) 0 0
\(166\) 0.519790 0.0403435
\(167\) −6.68080 6.68080i −0.516976 0.516976i 0.399679 0.916655i \(-0.369122\pi\)
−0.916655 + 0.399679i \(0.869122\pi\)
\(168\) 4.53551i 0.349922i
\(169\) 3.57088 0.274683
\(170\) 0 0
\(171\) 10.9316 0.835958
\(172\) 14.5110i 1.10645i
\(173\) −11.6979 11.6979i −0.889375 0.889375i 0.105088 0.994463i \(-0.466488\pi\)
−0.994463 + 0.105088i \(0.966488\pi\)
\(174\) 0.576711 0.0437204
\(175\) 0 0
\(176\) −1.24878 + 1.24878i −0.0941300 + 0.0941300i
\(177\) 10.1583 10.1583i 0.763548 0.763548i
\(178\) 2.17800i 0.163248i
\(179\) 19.5313i 1.45984i 0.683534 + 0.729919i \(0.260442\pi\)
−0.683534 + 0.729919i \(0.739558\pi\)
\(180\) 0 0
\(181\) 7.41178 7.41178i 0.550913 0.550913i −0.375791 0.926704i \(-0.622629\pi\)
0.926704 + 0.375791i \(0.122629\pi\)
\(182\) −1.38179 1.38179i −0.102425 0.102425i
\(183\) 13.5445 1.00124
\(184\) 5.28544 + 5.28544i 0.389648 + 0.389648i
\(185\) 0 0
\(186\) 3.37220 0.247262
\(187\) 1.85082 + 0.701428i 0.135346 + 0.0512935i
\(188\) 7.01717 0.511780
\(189\) 1.32111i 0.0960968i
\(190\) 0 0
\(191\) −5.32111 −0.385022 −0.192511 0.981295i \(-0.561663\pi\)
−0.192511 + 0.981295i \(0.561663\pi\)
\(192\) −11.3992 11.3992i −0.822665 0.822665i
\(193\) −8.82609 + 8.82609i −0.635316 + 0.635316i −0.949396 0.314081i \(-0.898304\pi\)
0.314081 + 0.949396i \(0.398304\pi\)
\(194\) 2.74732 2.74732i 0.197246 0.197246i
\(195\) 0 0
\(196\) 5.31820i 0.379871i
\(197\) −0.390156 + 0.390156i −0.0277974 + 0.0277974i −0.720869 0.693071i \(-0.756257\pi\)
0.693071 + 0.720869i \(0.256257\pi\)
\(198\) −0.215579 + 0.215579i −0.0153205 + 0.0153205i
\(199\) 12.4445 + 12.4445i 0.882170 + 0.882170i 0.993755 0.111585i \(-0.0355927\pi\)
−0.111585 + 0.993755i \(0.535593\pi\)
\(200\) 0 0
\(201\) 5.31820 + 5.31820i 0.375117 + 0.375117i
\(202\) 1.02525i 0.0721364i
\(203\) −2.14103 −0.150271
\(204\) −6.80815 + 17.9643i −0.476666 + 1.25775i
\(205\) 0 0
\(206\) 4.05109i 0.282253i
\(207\) −15.7518 15.7518i −1.09483 1.09483i
\(208\) 14.9758 1.03838
\(209\) 1.35778 + 1.35778i 0.0939193 + 0.0939193i
\(210\) 0 0
\(211\) −9.07234 + 9.07234i −0.624565 + 0.624565i −0.946695 0.322130i \(-0.895601\pi\)
0.322130 + 0.946695i \(0.395601\pi\)
\(212\) 11.9673i 0.821915i
\(213\) 4.35265i 0.298238i
\(214\) 0.856317 0.856317i 0.0585366 0.0585366i
\(215\) 0 0
\(216\) 0.414697 + 0.414697i 0.0282165 + 0.0282165i
\(217\) −12.5192 −0.849860
\(218\) −1.33226 1.33226i −0.0902322 0.0902322i
\(219\) 29.1418i 1.96922i
\(220\) 0 0
\(221\) −6.89199 15.3038i −0.463605 1.02944i
\(222\) −0.721590 −0.0484300
\(223\) 4.07073i 0.272597i 0.990668 + 0.136298i \(0.0435206\pi\)
−0.990668 + 0.136298i \(0.956479\pi\)
\(224\) −3.92766 3.92766i −0.262428 0.262428i
\(225\) 0 0
\(226\) 0.570878 + 0.570878i 0.0379742 + 0.0379742i
\(227\) 11.1542 11.1542i 0.740333 0.740333i −0.232309 0.972642i \(-0.574628\pi\)
0.972642 + 0.232309i \(0.0746281\pi\)
\(228\) −13.1787 + 13.1787i −0.872783 + 0.872783i
\(229\) 14.9460i 0.987659i 0.869559 + 0.493830i \(0.164403\pi\)
−0.869559 + 0.493830i \(0.835597\pi\)
\(230\) 0 0
\(231\) 1.67889 1.67889i 0.110463 0.110463i
\(232\) −0.672068 + 0.672068i −0.0441234 + 0.0441234i
\(233\) −0.514301 0.514301i −0.0336930 0.0336930i 0.690060 0.723753i \(-0.257584\pi\)
−0.723753 + 0.690060i \(0.757584\pi\)
\(234\) 2.58530 0.169007
\(235\) 0 0
\(236\) 11.6760i 0.760041i
\(237\) 24.4865 1.59057
\(238\) −0.701428 + 1.85082i −0.0454668 + 0.119971i
\(239\) 9.57379 0.619277 0.309639 0.950854i \(-0.399792\pi\)
0.309639 + 0.950854i \(0.399792\pi\)
\(240\) 0 0
\(241\) 6.00000 + 6.00000i 0.386494 + 0.386494i 0.873435 0.486941i \(-0.161887\pi\)
−0.486941 + 0.873435i \(0.661887\pi\)
\(242\) 2.50273 0.160882
\(243\) −15.1167 15.1167i −0.969739 0.969739i
\(244\) −7.78398 + 7.78398i −0.498318 + 0.498318i
\(245\) 0 0
\(246\) 6.00000i 0.382546i
\(247\) 16.2829i 1.03606i
\(248\) −3.92978 + 3.92978i −0.249541 + 0.249541i
\(249\) 3.78690 3.78690i 0.239985 0.239985i
\(250\) 0 0
\(251\) −6.03666 −0.381031 −0.190515 0.981684i \(-0.561016\pi\)
−0.190515 + 0.981684i \(0.561016\pi\)
\(252\) 7.76812 + 7.76812i 0.489346 + 0.489346i
\(253\) 3.91297i 0.246006i
\(254\) −0.693313 −0.0435023
\(255\) 0 0
\(256\) 11.8524 0.740776
\(257\) 27.2752i 1.70138i 0.525670 + 0.850689i \(0.323815\pi\)
−0.525670 + 0.850689i \(0.676185\pi\)
\(258\) 2.93389 + 2.93389i 0.182656 + 0.182656i
\(259\) 2.67889 0.166458
\(260\) 0 0
\(261\) 2.00292 2.00292i 0.123977 0.123977i
\(262\) 1.18211 1.18211i 0.0730309 0.0730309i
\(263\) 12.3700i 0.762765i −0.924417 0.381382i \(-0.875448\pi\)
0.924417 0.381382i \(-0.124552\pi\)
\(264\) 1.05400i 0.0648695i
\(265\) 0 0
\(266\) −1.35778 + 1.35778i −0.0832506 + 0.0832506i
\(267\) −15.8677 15.8677i −0.971086 0.971086i
\(268\) −6.11272 −0.373394
\(269\) −14.1958 14.1958i −0.865531 0.865531i 0.126443 0.991974i \(-0.459644\pi\)
−0.991974 + 0.126443i \(0.959644\pi\)
\(270\) 0 0
\(271\) −24.2102 −1.47066 −0.735332 0.677707i \(-0.762974\pi\)
−0.735332 + 0.677707i \(0.762974\pi\)
\(272\) −6.22857 13.8306i −0.377663 0.838606i
\(273\) −20.1338 −1.21855
\(274\) 0.122435i 0.00739655i
\(275\) 0 0
\(276\) 37.9797 2.28611
\(277\) 4.78045 + 4.78045i 0.287230 + 0.287230i 0.835984 0.548754i \(-0.184898\pi\)
−0.548754 + 0.835984i \(0.684898\pi\)
\(278\) −2.90453 + 2.90453i −0.174202 + 0.174202i
\(279\) 11.7116 11.7116i 0.701158 0.701158i
\(280\) 0 0
\(281\) 18.0367i 1.07598i 0.842952 + 0.537989i \(0.180816\pi\)
−0.842952 + 0.537989i \(0.819184\pi\)
\(282\) −1.41876 + 1.41876i −0.0844858 + 0.0844858i
\(283\) 17.8308 17.8308i 1.05993 1.05993i 0.0618440 0.998086i \(-0.480302\pi\)
0.998086 0.0618440i \(-0.0196981\pi\)
\(284\) 2.50146 + 2.50146i 0.148434 + 0.148434i
\(285\) 0 0
\(286\) 0.321112 + 0.321112i 0.0189878 + 0.0189878i
\(287\) 22.2749i 1.31484i
\(288\) 7.34861 0.433021
\(289\) −11.2671 + 12.7300i −0.662771 + 0.748822i
\(290\) 0 0
\(291\) 40.0308i 2.34665i
\(292\) 16.7477 + 16.7477i 0.980086 + 0.980086i
\(293\) 26.2584 1.53403 0.767017 0.641627i \(-0.221740\pi\)
0.767017 + 0.641627i \(0.221740\pi\)
\(294\) −1.07525 1.07525i −0.0627100 0.0627100i
\(295\) 0 0
\(296\) 0.840902 0.840902i 0.0488764 0.0488764i
\(297\) 0.307012i 0.0178147i
\(298\) 1.70135i 0.0985565i
\(299\) −23.4629 + 23.4629i −1.35689 + 1.35689i
\(300\) 0 0
\(301\) −10.8920 10.8920i −0.627804 0.627804i
\(302\) −1.73497 −0.0998362
\(303\) 7.46940 + 7.46940i 0.429106 + 0.429106i
\(304\) 14.7156i 0.843995i
\(305\) 0 0
\(306\) −1.07525 2.38762i −0.0614681 0.136491i
\(307\) −13.9136 −0.794088 −0.397044 0.917800i \(-0.629964\pi\)
−0.397044 + 0.917800i \(0.629964\pi\)
\(308\) 1.92971i 0.109955i
\(309\) −29.5140 29.5140i −1.67899 1.67899i
\(310\) 0 0
\(311\) −6.18035 6.18035i −0.350455 0.350455i 0.509824 0.860279i \(-0.329711\pi\)
−0.860279 + 0.509824i \(0.829711\pi\)
\(312\) −6.32000 + 6.32000i −0.357800 + 0.357800i
\(313\) 4.91312 4.91312i 0.277706 0.277706i −0.554487 0.832193i \(-0.687085\pi\)
0.832193 + 0.554487i \(0.187085\pi\)
\(314\) 2.89491i 0.163369i
\(315\) 0 0
\(316\) −14.0723 + 14.0723i −0.791631 + 0.791631i
\(317\) 2.98341 2.98341i 0.167565 0.167565i −0.618343 0.785908i \(-0.712196\pi\)
0.785908 + 0.618343i \(0.212196\pi\)
\(318\) −2.41959 2.41959i −0.135684 0.135684i
\(319\) 0.497552 0.0278575
\(320\) 0 0
\(321\) 12.4773i 0.696415i
\(322\) 3.91297 0.218061
\(323\) −15.0378 + 6.77223i −0.836728 + 0.376817i
\(324\) 18.9345 1.05192
\(325\) 0 0
\(326\) −1.40787 1.40787i −0.0779749 0.0779749i
\(327\) −19.4122 −1.07350
\(328\) −6.99207 6.99207i −0.386073 0.386073i
\(329\) 5.26711 5.26711i 0.290385 0.290385i
\(330\) 0 0
\(331\) 13.6760i 0.751699i 0.926681 + 0.375850i \(0.122649\pi\)
−0.926681 + 0.375850i \(0.877351\pi\)
\(332\) 4.35265i 0.238883i
\(333\) −2.50608 + 2.50608i −0.137332 + 0.137332i
\(334\) −1.55255 + 1.55255i −0.0849516 + 0.0849516i
\(335\) 0 0
\(336\) −18.1958 −0.992660
\(337\) 4.58504 + 4.58504i 0.249763 + 0.249763i 0.820873 0.571110i \(-0.193487\pi\)
−0.571110 + 0.820873i \(0.693487\pi\)
\(338\) 0.829834i 0.0451370i
\(339\) 8.31820 0.451782
\(340\) 0 0
\(341\) 2.90933 0.157549
\(342\) 2.54038i 0.137368i
\(343\) 14.2165 + 14.2165i 0.767621 + 0.767621i
\(344\) −6.83799 −0.368679
\(345\) 0 0
\(346\) −2.71847 + 2.71847i −0.146146 + 0.146146i
\(347\) 3.53962 3.53962i 0.190017 0.190017i −0.605686 0.795703i \(-0.707101\pi\)
0.795703 + 0.605686i \(0.207101\pi\)
\(348\) 4.82930i 0.258878i
\(349\) 9.21310i 0.493166i −0.969122 0.246583i \(-0.920692\pi\)
0.969122 0.246583i \(-0.0793078\pi\)
\(350\) 0 0
\(351\) −1.84090 + 1.84090i −0.0982601 + 0.0982601i
\(352\) 0.912747 + 0.912747i 0.0486496 + 0.0486496i
\(353\) −13.8600 −0.737693 −0.368847 0.929490i \(-0.620247\pi\)
−0.368847 + 0.929490i \(0.620247\pi\)
\(354\) −2.36069 2.36069i −0.125469 0.125469i
\(355\) 0 0
\(356\) 18.2383 0.966626
\(357\) 8.37386 + 18.5943i 0.443192 + 0.984114i
\(358\) 4.53887 0.239886
\(359\) 11.5024i 0.607076i 0.952819 + 0.303538i \(0.0981679\pi\)
−0.952819 + 0.303538i \(0.901832\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) −1.72242 1.72242i −0.0905283 0.0905283i
\(363\) 18.2335 18.2335i 0.957010 0.957010i
\(364\) 11.5709 11.5709i 0.606479 0.606479i
\(365\) 0 0
\(366\) 3.14759i 0.164527i
\(367\) −13.7349 + 13.7349i −0.716958 + 0.716958i −0.967981 0.251023i \(-0.919233\pi\)
0.251023 + 0.967981i \(0.419233\pi\)
\(368\) −21.2043 + 21.2043i −1.10535 + 1.10535i
\(369\) 20.8380 + 20.8380i 1.08478 + 1.08478i
\(370\) 0 0
\(371\) 8.98266 + 8.98266i 0.466356 + 0.466356i
\(372\) 28.2383i 1.46409i
\(373\) −5.58922 −0.289399 −0.144699 0.989476i \(-0.546221\pi\)
−0.144699 + 0.989476i \(0.546221\pi\)
\(374\) 0.163004 0.430112i 0.00842876 0.0222406i
\(375\) 0 0
\(376\) 3.30669i 0.170529i
\(377\) −2.98341 2.98341i −0.153653 0.153653i
\(378\) 0.307012 0.0157910
\(379\) 0.393449 + 0.393449i 0.0202101 + 0.0202101i 0.717140 0.696930i \(-0.245451\pi\)
−0.696930 + 0.717140i \(0.745451\pi\)
\(380\) 0 0
\(381\) −5.05109 + 5.05109i −0.258775 + 0.258775i
\(382\) 1.23657i 0.0632684i
\(383\) 24.8020i 1.26732i 0.773610 + 0.633662i \(0.218449\pi\)
−0.773610 + 0.633662i \(0.781551\pi\)
\(384\) −11.7541 + 11.7541i −0.599826 + 0.599826i
\(385\) 0 0
\(386\) 2.05109 + 2.05109i 0.104398 + 0.104398i
\(387\) 20.3788 1.03591
\(388\) 23.0056 + 23.0056i 1.16793 + 1.16793i
\(389\) 8.76664i 0.444486i 0.974991 + 0.222243i \(0.0713379\pi\)
−0.974991 + 0.222243i \(0.928662\pi\)
\(390\) 0 0
\(391\) 31.4272 + 11.9103i 1.58934 + 0.602331i
\(392\) 2.50608 0.126576
\(393\) 17.2244i 0.868854i
\(394\) 0.0906680 + 0.0906680i 0.00456779 + 0.00456779i
\(395\) 0 0
\(396\) −1.80523 1.80523i −0.0907162 0.0907162i
\(397\) −4.97519 + 4.97519i −0.249698 + 0.249698i −0.820847 0.571149i \(-0.806498\pi\)
0.571149 + 0.820847i \(0.306498\pi\)
\(398\) 2.89198 2.89198i 0.144962 0.144962i
\(399\) 19.7840i 0.990438i
\(400\) 0 0
\(401\) −7.51979 + 7.51979i −0.375520 + 0.375520i −0.869483 0.493963i \(-0.835548\pi\)
0.493963 + 0.869483i \(0.335548\pi\)
\(402\) 1.23589 1.23589i 0.0616407 0.0616407i
\(403\) −17.4449 17.4449i −0.868992 0.868992i
\(404\) −8.58530 −0.427135
\(405\) 0 0
\(406\) 0.497552i 0.0246931i
\(407\) −0.622545 −0.0308584
\(408\) 8.46529 + 3.20819i 0.419094 + 0.158829i
\(409\) 2.53421 0.125309 0.0626544 0.998035i \(-0.480043\pi\)
0.0626544 + 0.998035i \(0.480043\pi\)
\(410\) 0 0
\(411\) −0.891990 0.891990i −0.0439986 0.0439986i
\(412\) 33.9232 1.67128
\(413\) 8.76401 + 8.76401i 0.431249 + 0.431249i
\(414\) −3.66056 + 3.66056i −0.179907 + 0.179907i
\(415\) 0 0
\(416\) 10.9460i 0.536672i
\(417\) 42.3215i 2.07249i
\(418\) 0.315533 0.315533i 0.0154332 0.0154332i
\(419\) 18.6403 18.6403i 0.910638 0.910638i −0.0856842 0.996322i \(-0.527308\pi\)
0.996322 + 0.0856842i \(0.0273076\pi\)
\(420\) 0 0
\(421\) −7.94308 −0.387122 −0.193561 0.981088i \(-0.562004\pi\)
−0.193561 + 0.981088i \(0.562004\pi\)
\(422\) 2.10831 + 2.10831i 0.102631 + 0.102631i
\(423\) 9.85469i 0.479151i
\(424\) 5.63931 0.273869
\(425\) 0 0
\(426\) −1.01151 −0.0490078
\(427\) 11.6854i 0.565494i
\(428\) 7.17068 + 7.17068i 0.346608 + 0.346608i
\(429\) 4.67889 0.225899
\(430\) 0 0
\(431\) −8.01833 + 8.01833i −0.386229 + 0.386229i −0.873340 0.487111i \(-0.838051\pi\)
0.487111 + 0.873340i \(0.338051\pi\)
\(432\) −1.66370 + 1.66370i −0.0800447 + 0.0800447i
\(433\) 6.24538i 0.300134i −0.988676 0.150067i \(-0.952051\pi\)
0.988676 0.150067i \(-0.0479489\pi\)
\(434\) 2.90933i 0.139652i
\(435\) 0 0
\(436\) 11.1562 11.1562i 0.534284 0.534284i
\(437\) 23.0552 + 23.0552i 1.10288 + 1.10288i
\(438\) −6.77223 −0.323590
\(439\) 7.44454 + 7.44454i 0.355308 + 0.355308i 0.862080 0.506772i \(-0.169161\pi\)
−0.506772 + 0.862080i \(0.669161\pi\)
\(440\) 0 0
\(441\) −7.46870 −0.355652
\(442\) −3.55643 + 1.60162i −0.169162 + 0.0761815i
\(443\) −29.2669 −1.39051 −0.695257 0.718761i \(-0.744709\pi\)
−0.695257 + 0.718761i \(0.744709\pi\)
\(444\) 6.04250i 0.286764i
\(445\) 0 0
\(446\) 0.945995 0.0447942
\(447\) 12.3951 + 12.3951i 0.586267 + 0.586267i
\(448\) 9.83453 9.83453i 0.464638 0.464638i
\(449\) 23.1418 23.1418i 1.09213 1.09213i 0.0968256 0.995301i \(-0.469131\pi\)
0.995301 0.0968256i \(-0.0308689\pi\)
\(450\) 0 0
\(451\) 5.17644i 0.243749i
\(452\) −4.78045 + 4.78045i −0.224854 + 0.224854i
\(453\) −12.6400 + 12.6400i −0.593879 + 0.593879i
\(454\) −2.59213 2.59213i −0.121655 0.121655i
\(455\) 0 0
\(456\) 6.21019 + 6.21019i 0.290819 + 0.290819i
\(457\) 31.4752i 1.47235i −0.676792 0.736174i \(-0.736631\pi\)
0.676792 0.736174i \(-0.263369\pi\)
\(458\) 3.47329 0.162296
\(459\) 2.46579 + 0.934487i 0.115093 + 0.0436181i
\(460\) 0 0
\(461\) 26.6442i 1.24094i −0.784228 0.620472i \(-0.786941\pi\)
0.784228 0.620472i \(-0.213059\pi\)
\(462\) −0.390156 0.390156i −0.0181517 0.0181517i
\(463\) −14.2040 −0.660115 −0.330058 0.943961i \(-0.607068\pi\)
−0.330058 + 0.943961i \(0.607068\pi\)
\(464\) −2.69623 2.69623i −0.125169 0.125169i
\(465\) 0 0
\(466\) −0.119518 + 0.119518i −0.00553657 + 0.00553657i
\(467\) 29.1177i 1.34741i −0.739002 0.673703i \(-0.764703\pi\)
0.739002 0.673703i \(-0.235297\pi\)
\(468\) 21.6490i 1.00072i
\(469\) −4.58822 + 4.58822i −0.211864 + 0.211864i
\(470\) 0 0
\(471\) 21.0907 + 21.0907i 0.971807 + 0.971807i
\(472\) 5.50204 0.253252
\(473\) 2.53118 + 2.53118i 0.116384 + 0.116384i
\(474\) 5.69040i 0.261369i
\(475\) 0 0
\(476\) −15.4985 5.87366i −0.710374 0.269219i
\(477\) −16.8064 −0.769514
\(478\) 2.22485i 0.101762i
\(479\) 1.39053 + 1.39053i 0.0635350 + 0.0635350i 0.738160 0.674625i \(-0.235695\pi\)
−0.674625 + 0.738160i \(0.735695\pi\)
\(480\) 0 0
\(481\) 3.73289 + 3.73289i 0.170205 + 0.170205i
\(482\) 1.39434 1.39434i 0.0635103 0.0635103i
\(483\) 28.5077 28.5077i 1.29714 1.29714i
\(484\) 20.9575i 0.952614i
\(485\) 0 0
\(486\) −3.51297 + 3.51297i −0.159351 + 0.159351i
\(487\) −3.41883 + 3.41883i −0.154922 + 0.154922i −0.780312 0.625390i \(-0.784940\pi\)
0.625390 + 0.780312i \(0.284940\pi\)
\(488\) 3.66803 + 3.66803i 0.166044 + 0.166044i
\(489\) −20.5140 −0.927673
\(490\) 0 0
\(491\) 16.8949i 0.762456i −0.924481 0.381228i \(-0.875501\pi\)
0.924481 0.381228i \(-0.124499\pi\)
\(492\) −50.2431 −2.26514
\(493\) −1.51445 + 3.99611i −0.0682075 + 0.179976i
\(494\) −3.78398 −0.170249
\(495\) 0 0
\(496\) −15.7656 15.7656i −0.707899 0.707899i
\(497\) 3.75520 0.168444
\(498\) −0.880035 0.880035i −0.0394353 0.0394353i
\(499\) −3.07234 + 3.07234i −0.137537 + 0.137537i −0.772523 0.634987i \(-0.781006\pi\)
0.634987 + 0.772523i \(0.281006\pi\)
\(500\) 0 0
\(501\) 22.6220i 1.01067i
\(502\) 1.40286i 0.0626125i
\(503\) 8.13721 8.13721i 0.362820 0.362820i −0.502030 0.864850i \(-0.667413\pi\)
0.864850 + 0.502030i \(0.167413\pi\)
\(504\) 3.66056 3.66056i 0.163054 0.163054i
\(505\) 0 0
\(506\) −0.909332 −0.0404247
\(507\) −6.04570 6.04570i −0.268499 0.268499i
\(508\) 5.80570i 0.257586i
\(509\) −34.8177 −1.54327 −0.771634 0.636066i \(-0.780560\pi\)
−0.771634 + 0.636066i \(0.780560\pi\)
\(510\) 0 0
\(511\) 25.1418 1.11221
\(512\) 16.6395i 0.735368i
\(513\) 1.80891 + 1.80891i 0.0798655 + 0.0798655i
\(514\) 6.33845 0.279577
\(515\) 0 0
\(516\) −24.5680 + 24.5680i −1.08154 + 1.08154i
\(517\) −1.22402 + 1.22402i −0.0538323 + 0.0538323i
\(518\) 0.622545i 0.0273531i
\(519\) 39.6105i 1.73871i
\(520\) 0 0
\(521\) 15.8746 15.8746i 0.695481 0.695481i −0.267951 0.963432i \(-0.586347\pi\)
0.963432 + 0.267951i \(0.0863467\pi\)
\(522\) −0.465456 0.465456i −0.0203725 0.0203725i
\(523\) −16.4943 −0.721243 −0.360622 0.932712i \(-0.617435\pi\)
−0.360622 + 0.932712i \(0.617435\pi\)
\(524\) 9.89881 + 9.89881i 0.432432 + 0.432432i
\(525\) 0 0
\(526\) −2.87465 −0.125341
\(527\) −8.85545 + 23.3664i −0.385749 + 1.01786i
\(528\) 4.22850 0.184022
\(529\) 43.4426i 1.88881i
\(530\) 0 0
\(531\) −16.3974 −0.711585
\(532\) −11.3698 11.3698i −0.492944 0.492944i
\(533\) 31.0389 31.0389i 1.34444 1.34444i
\(534\) −3.68748 + 3.68748i −0.159573 + 0.159573i
\(535\) 0 0
\(536\) 2.88048i 0.124418i
\(537\) 33.0676 33.0676i 1.42697 1.42697i
\(538\) −3.29894 + 3.29894i −0.142228 + 0.142228i
\(539\) −0.927664 0.927664i −0.0399573 0.0399573i
\(540\) 0 0
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) 5.62619i 0.241666i
\(543\) −25.0972 −1.07702
\(544\) −10.1090 + 4.55255i −0.433420 + 0.195189i
\(545\) 0 0
\(546\) 4.67889i 0.200238i
\(547\) 8.84290 + 8.84290i 0.378095 + 0.378095i 0.870415 0.492320i \(-0.163851\pi\)
−0.492320 + 0.870415i \(0.663851\pi\)
\(548\) 1.02525 0.0437965
\(549\) −10.9316 10.9316i −0.466548 0.466548i
\(550\) 0 0
\(551\) −2.93157 + 2.93157i −0.124889 + 0.124889i
\(552\) 17.8971i 0.761752i
\(553\) 21.1255i 0.898346i
\(554\) 1.11093 1.11093i 0.0471987 0.0471987i
\(555\) 0 0
\(556\) −24.3221 24.3221i −1.03149 1.03149i
\(557\) −38.9354 −1.64975 −0.824873 0.565318i \(-0.808753\pi\)
−0.824873 + 0.565318i \(0.808753\pi\)
\(558\) −2.72166 2.72166i −0.115217 0.115217i
\(559\) 30.3549i 1.28387i
\(560\) 0 0
\(561\) −1.94600 4.32111i −0.0821600 0.182438i
\(562\) 4.19153 0.176809
\(563\) 8.17844i 0.344680i −0.985038 0.172340i \(-0.944867\pi\)
0.985038 0.172340i \(-0.0551328\pi\)
\(564\) −11.8805 11.8805i −0.500259 0.500259i
\(565\) 0 0
\(566\) −4.14368 4.14368i −0.174172 0.174172i
\(567\) 14.2123 14.2123i 0.596859 0.596859i
\(568\) 1.17876 1.17876i 0.0494595 0.0494595i
\(569\) 11.8920i 0.498538i −0.968434 0.249269i \(-0.919810\pi\)
0.968434 0.249269i \(-0.0801904\pi\)
\(570\) 0 0
\(571\) −2.80523 + 2.80523i −0.117395 + 0.117395i −0.763364 0.645969i \(-0.776454\pi\)
0.645969 + 0.763364i \(0.276454\pi\)
\(572\) −2.68895 + 2.68895i −0.112431 + 0.112431i
\(573\) 9.00895 + 9.00895i 0.376354 + 0.376354i
\(574\) −5.17644 −0.216060
\(575\) 0 0
\(576\) 18.4003i 0.766678i
\(577\) 6.58601 0.274179 0.137090 0.990559i \(-0.456225\pi\)
0.137090 + 0.990559i \(0.456225\pi\)
\(578\) 2.95831 + 2.61836i 0.123049 + 0.108909i
\(579\) 29.8862 1.24203
\(580\) 0 0
\(581\) 3.26711 + 3.26711i 0.135542 + 0.135542i
\(582\) −9.30274 −0.385611
\(583\) −2.08747 2.08747i −0.0864543 0.0864543i
\(584\) 7.89199 7.89199i 0.326573 0.326573i
\(585\) 0 0
\(586\) 6.10218i 0.252079i
\(587\) 22.3369i 0.921944i −0.887415 0.460972i \(-0.847501\pi\)
0.887415 0.460972i \(-0.152499\pi\)
\(588\) 9.00402 9.00402i 0.371319 0.371319i
\(589\) −17.1418 + 17.1418i −0.706314 + 0.706314i
\(590\) 0 0
\(591\) 1.32111 0.0543433
\(592\) 3.37357 + 3.37357i 0.138653 + 0.138653i
\(593\) 30.1344i 1.23747i −0.785599 0.618736i \(-0.787645\pi\)
0.785599 0.618736i \(-0.212355\pi\)
\(594\) −0.0713464 −0.00292738
\(595\) 0 0
\(596\) −14.2468 −0.583574
\(597\) 42.1387i 1.72462i
\(598\) 5.45252 + 5.45252i 0.222970 + 0.222970i
\(599\) 8.88907 0.363198 0.181599 0.983373i \(-0.441873\pi\)
0.181599 + 0.983373i \(0.441873\pi\)
\(600\) 0 0
\(601\) 17.1418 17.1418i 0.699227 0.699227i −0.265017 0.964244i \(-0.585378\pi\)
0.964244 + 0.265017i \(0.0853776\pi\)
\(602\) −2.53118 + 2.53118i −0.103163 + 0.103163i
\(603\) 8.58450i 0.349588i
\(604\) 14.5284i 0.591151i
\(605\) 0 0
\(606\) 1.73581 1.73581i 0.0705124 0.0705124i
\(607\) −10.5442 10.5442i −0.427978 0.427978i 0.459961 0.887939i \(-0.347863\pi\)
−0.887939 + 0.459961i \(0.847863\pi\)
\(608\) −10.7558 −0.436205
\(609\) 3.62488 + 3.62488i 0.146888 + 0.146888i
\(610\) 0 0
\(611\) 14.6789 0.593844
\(612\) 19.9936 9.00402i 0.808192 0.363966i
\(613\) −31.3459 −1.26605 −0.633024 0.774132i \(-0.718187\pi\)
−0.633024 + 0.774132i \(0.718187\pi\)
\(614\) 3.23336i 0.130488i
\(615\) 0 0
\(616\) 0.909332 0.0366380
\(617\) 10.9050 + 10.9050i 0.439020 + 0.439020i 0.891682 0.452662i \(-0.149526\pi\)
−0.452662 + 0.891682i \(0.649526\pi\)
\(618\) −6.85873 + 6.85873i −0.275899 + 0.275899i
\(619\) −31.8930 + 31.8930i −1.28189 + 1.28189i −0.342294 + 0.939593i \(0.611204\pi\)
−0.939593 + 0.342294i \(0.888796\pi\)
\(620\) 0 0
\(621\) 5.21310i 0.209195i
\(622\) −1.43625 + 1.43625i −0.0575882 + 0.0575882i
\(623\) 13.6897 13.6897i 0.548466 0.548466i
\(624\) −25.3549 25.3549i −1.01501 1.01501i
\(625\) 0 0
\(626\) −1.14176 1.14176i −0.0456338 0.0456338i
\(627\) 4.59759i 0.183610i
\(628\) −24.2415 −0.967343
\(629\) 1.89491 5.00000i 0.0755549 0.199363i
\(630\) 0 0
\(631\) 29.7493i 1.18430i 0.805827 + 0.592150i \(0.201721\pi\)
−0.805827 + 0.592150i \(0.798279\pi\)
\(632\) 6.63128 + 6.63128i 0.263778 + 0.263778i
\(633\) 30.7200 1.22101
\(634\) −0.693313 0.693313i −0.0275350 0.0275350i
\(635\) 0 0
\(636\) 20.2613 20.2613i 0.803412 0.803412i
\(637\) 11.1249i 0.440784i
\(638\) 0.115626i 0.00457767i
\(639\) −3.51297 + 3.51297i −0.138971 + 0.138971i
\(640\) 0 0
\(641\) 31.2131 + 31.2131i 1.23284 + 1.23284i 0.962867 + 0.269977i \(0.0870159\pi\)
0.269977 + 0.962867i \(0.412984\pi\)
\(642\) −2.89959 −0.114438
\(643\) −5.36109 5.36109i −0.211421 0.211421i 0.593450 0.804871i \(-0.297765\pi\)
−0.804871 + 0.593450i \(0.797765\pi\)
\(644\) 32.7666i 1.29119i
\(645\) 0 0
\(646\) 1.57379 + 3.49464i 0.0619201 + 0.137495i
\(647\) 10.2540 0.403128 0.201564 0.979475i \(-0.435398\pi\)
0.201564 + 0.979475i \(0.435398\pi\)
\(648\) 8.92246i 0.350507i
\(649\) −2.03666 2.03666i −0.0799460 0.0799460i
\(650\) 0 0
\(651\) 21.1958 + 21.1958i 0.830727 + 0.830727i
\(652\) 11.7893 11.7893i 0.461706 0.461706i
\(653\) −10.1207 + 10.1207i −0.396054 + 0.396054i −0.876839 0.480785i \(-0.840352\pi\)
0.480785 + 0.876839i \(0.340352\pi\)
\(654\) 4.51120i 0.176402i
\(655\) 0 0
\(656\) 28.0511 28.0511i 1.09521 1.09521i
\(657\) −23.5199 + 23.5199i −0.917601 + 0.917601i
\(658\) −1.22402 1.22402i −0.0477172 0.0477172i
\(659\) 43.9653 1.71265 0.856323 0.516441i \(-0.172743\pi\)
0.856323 + 0.516441i \(0.172743\pi\)
\(660\) 0 0
\(661\) 20.7077i 0.805438i −0.915324 0.402719i \(-0.868065\pi\)
0.915324 0.402719i \(-0.131935\pi\)
\(662\) 3.17815 0.123522
\(663\) −14.2416 + 37.5787i −0.553099 + 1.45944i
\(664\) 2.05109 0.0795977
\(665\) 0 0
\(666\) 0.582387 + 0.582387i 0.0225670 + 0.0225670i
\(667\) 8.44848 0.327126
\(668\) −13.0008 13.0008i −0.503016 0.503016i
\(669\) 6.89199 6.89199i 0.266460 0.266460i
\(670\) 0 0
\(671\) 2.71555i 0.104833i
\(672\) 13.2995i 0.513040i
\(673\) −32.7151 + 32.7151i −1.26108 + 1.26108i −0.310503 + 0.950572i \(0.600497\pi\)
−0.950572 + 0.310503i \(0.899503\pi\)
\(674\) 1.06551 1.06551i 0.0410420 0.0410420i
\(675\) 0 0
\(676\) 6.94891 0.267266
\(677\) 1.24509 + 1.24509i 0.0478527 + 0.0478527i 0.730628 0.682776i \(-0.239227\pi\)
−0.682776 + 0.730628i \(0.739227\pi\)
\(678\) 1.93306i 0.0742387i
\(679\) 34.5362 1.32538
\(680\) 0 0
\(681\) −37.7696 −1.44733
\(682\) 0.676098i 0.0258891i
\(683\) 16.2377 + 16.2377i 0.621317 + 0.621317i 0.945868 0.324551i \(-0.105213\pi\)
−0.324551 + 0.945868i \(0.605213\pi\)
\(684\) 21.2728 0.813385
\(685\) 0 0
\(686\) 3.30377 3.30377i 0.126139 0.126139i
\(687\) 25.3044 25.3044i 0.965425 0.965425i
\(688\) 27.4329i 1.04587i
\(689\) 25.0337i 0.953710i
\(690\) 0 0
\(691\) −18.2314 + 18.2314i −0.693556 + 0.693556i −0.963013 0.269456i \(-0.913156\pi\)
0.269456 + 0.963013i \(0.413156\pi\)
\(692\) −22.7641 22.7641i −0.865360 0.865360i
\(693\) −2.71002 −0.102945
\(694\) −0.822571 0.822571i −0.0312244 0.0312244i
\(695\) 0 0
\(696\) 2.27570 0.0862602
\(697\) −41.5748 15.7561i −1.57476 0.596804i
\(698\) −2.14103 −0.0810391
\(699\) 1.74148i 0.0658690i
\(700\) 0 0
\(701\) −25.1195 −0.948751 −0.474376 0.880323i \(-0.657326\pi\)
−0.474376 + 0.880323i \(0.657326\pi\)
\(702\) 0.427806 + 0.427806i 0.0161465 + 0.0161465i
\(703\) 3.66803 3.66803i 0.138342 0.138342i
\(704\) −2.28544 + 2.28544i −0.0861357 + 0.0861357i
\(705\) 0 0
\(706\) 3.22092i 0.121221i
\(707\) −6.44415 + 6.44415i −0.242357 + 0.242357i
\(708\) 19.7681 19.7681i 0.742931 0.742931i
\(709\) 23.7156 + 23.7156i 0.890656 + 0.890656i 0.994585 0.103929i \(-0.0331413\pi\)
−0.103929 + 0.994585i \(0.533141\pi\)
\(710\) 0 0
\(711\) −19.7627 19.7627i −0.741160 0.741160i
\(712\) 8.59437i 0.322088i
\(713\) 49.4008 1.85007
\(714\) 4.32111 1.94600i 0.161714 0.0728270i
\(715\) 0 0
\(716\) 38.0078i 1.42042i
\(717\) −16.2090 16.2090i −0.605336 0.605336i
\(718\) 2.67305 0.0997572
\(719\) −29.4812 29.4812i −1.09946 1.09946i −0.994473 0.104990i \(-0.966519\pi\)
−0.104990 0.994473i \(-0.533481\pi\)
\(720\) 0 0
\(721\) 25.4629 25.4629i 0.948287 0.948287i
\(722\) 0.697168i 0.0259459i
\(723\) 20.3167i 0.755586i
\(724\) 14.4233 14.4233i 0.536037 0.536037i
\(725\) 0 0
\(726\) −4.23727 4.23727i −0.157260 0.157260i
\(727\) −12.2458 −0.454172 −0.227086 0.973875i \(-0.572920\pi\)
−0.227086 + 0.973875i \(0.572920\pi\)
\(728\) −5.45252 5.45252i −0.202084 0.202084i
\(729\) 21.9971i 0.814707i
\(730\) 0 0
\(731\) −28.0337 + 12.6249i −1.03687 + 0.466948i
\(732\) 26.3575 0.974200
\(733\) 32.8393i 1.21295i 0.795104 + 0.606473i \(0.207416\pi\)
−0.795104 + 0.606473i \(0.792584\pi\)
\(734\) 3.19185 + 3.19185i 0.117814 + 0.117814i
\(735\) 0 0
\(736\) 15.4985 + 15.4985i 0.571284 + 0.571284i
\(737\) 1.06625 1.06625i 0.0392759 0.0392759i
\(738\) 4.84253 4.84253i 0.178256 0.178256i
\(739\) 6.00000i 0.220714i 0.993892 + 0.110357i \(0.0351994\pi\)
−0.993892 + 0.110357i \(0.964801\pi\)
\(740\) 0 0
\(741\) −27.5680 + 27.5680i −1.01273 + 1.01273i
\(742\) 2.08747 2.08747i 0.0766336 0.0766336i
\(743\) 16.1704 + 16.1704i 0.593236 + 0.593236i 0.938504 0.345268i \(-0.112212\pi\)
−0.345268 + 0.938504i \(0.612212\pi\)
\(744\) 13.3067 0.487847
\(745\) 0 0
\(746\) 1.29887i 0.0475552i
\(747\) −6.11272 −0.223653
\(748\) 3.60170 + 1.36498i 0.131691 + 0.0499085i
\(749\) 10.7647 0.393332
\(750\) 0 0
\(751\) −22.6799 22.6799i −0.827600 0.827600i 0.159584 0.987184i \(-0.448985\pi\)
−0.987184 + 0.159584i \(0.948985\pi\)
\(752\) 13.2659 0.483758
\(753\) 10.2204 + 10.2204i 0.372453 + 0.372453i
\(754\) −0.693313 + 0.693313i −0.0252490 + 0.0252490i
\(755\) 0 0
\(756\) 2.57088i 0.0935019i
\(757\) 36.2220i 1.31651i −0.752794 0.658256i \(-0.771294\pi\)
0.752794 0.658256i \(-0.228706\pi\)
\(758\) 0.0914333 0.0914333i 0.00332101 0.00332101i
\(759\) −6.62488 + 6.62488i −0.240468 + 0.240468i
\(760\) 0 0
\(761\) 24.4851 0.887584 0.443792 0.896130i \(-0.353633\pi\)
0.443792 + 0.896130i \(0.353633\pi\)
\(762\) 1.17382 + 1.17382i 0.0425230 + 0.0425230i
\(763\) 16.7477i 0.606308i
\(764\) −10.3549 −0.374626
\(765\) 0 0
\(766\) 5.76372 0.208252
\(767\) 24.4244i 0.881914i
\(768\) −20.0668 20.0668i −0.724099 0.724099i
\(769\) 5.55937 0.200476 0.100238 0.994963i \(-0.468040\pi\)
0.100238 + 0.994963i \(0.468040\pi\)
\(770\) 0 0
\(771\) 46.1784 46.1784i 1.66308 1.66308i
\(772\) −17.1755 + 17.1755i −0.618161 + 0.618161i
\(773\) 36.5376i 1.31416i −0.753819 0.657082i \(-0.771790\pi\)
0.753819 0.657082i \(-0.228210\pi\)
\(774\) 4.73581i 0.170225i
\(775\) 0 0
\(776\) 10.8409 10.8409i 0.389166 0.389166i
\(777\) −4.53551 4.53551i −0.162711 0.162711i
\(778\) 2.03727 0.0730398
\(779\) −30.4995 30.4995i −1.09276 1.09276i
\(780\) 0 0
\(781\) −0.872669 −0.0312265
\(782\) 2.76783 7.30334i 0.0989775 0.261167i
\(783\) 0.662870 0.0236890
\(784\) 10.0540i 0.359072i
\(785\) 0 0
\(786\) −4.00276 −0.142774
\(787\) −11.3490 11.3490i −0.404547 0.404547i 0.475285 0.879832i \(-0.342345\pi\)
−0.879832 + 0.475285i \(0.842345\pi\)
\(788\) −0.759241 + 0.759241i −0.0270468 + 0.0270468i
\(789\) −20.9431 + 20.9431i −0.745593 + 0.745593i
\(790\) 0 0
\(791\) 7.17644i 0.255165i
\(792\) −0.850674 + 0.850674i −0.0302274 + 0.0302274i
\(793\) −16.2829 + 16.2829i −0.578224 + 0.578224i
\(794\) 1.15618 + 1.15618i 0.0410313 + 0.0410313i
\(795\) 0 0
\(796\) 24.2170 + 24.2170i 0.858349 + 0.858349i
\(797\) 34.7907i 1.23235i 0.787609 + 0.616175i \(0.211319\pi\)
−0.787609 + 0.616175i \(0.788681\pi\)
\(798\) 4.59759 0.162753
\(799\) −6.10509 13.5565i −0.215983 0.479593i
\(800\) 0 0
\(801\) 25.6132i 0.904999i
\(802\) 1.74752 + 1.74752i 0.0617070 + 0.0617070i
\(803\) −5.84268 −0.206184
\(804\) 10.3492 + 10.3492i 0.364988 + 0.364988i
\(805\) 0 0
\(806\) −4.05400 + 4.05400i −0.142796 + 0.142796i
\(807\) 48.0685i 1.69209i
\(808\) 4.04563i 0.142325i
\(809\) 13.3549 13.3549i 0.469532 0.469532i −0.432231 0.901763i \(-0.642274\pi\)
0.901763 + 0.432231i \(0.142274\pi\)
\(810\) 0 0
\(811\) −9.28544 9.28544i −0.326056 0.326056i 0.525029 0.851085i \(-0.324055\pi\)
−0.851085 + 0.525029i \(0.824055\pi\)
\(812\) −4.16643 −0.146213
\(813\) 40.9893 + 40.9893i 1.43756 + 1.43756i
\(814\) 0.144673i 0.00507078i
\(815\) 0 0
\(816\) −12.8707 + 33.9614i −0.450566 + 1.18889i
\(817\) −29.8274 −1.04353
\(818\) 0.588924i 0.0205913i
\(819\) 16.2498 + 16.2498i 0.567813 + 0.567813i
\(820\) 0 0
\(821\) −27.8206 27.8206i −0.970947 0.970947i 0.0286425 0.999590i \(-0.490882\pi\)
−0.999590 + 0.0286425i \(0.990882\pi\)
\(822\) −0.207289 + 0.207289i −0.00723004 + 0.00723004i
\(823\) −28.4414 + 28.4414i −0.991403 + 0.991403i −0.999963 0.00855996i \(-0.997275\pi\)
0.00855996 + 0.999963i \(0.497275\pi\)
\(824\) 15.9856i 0.556884i
\(825\) 0 0
\(826\) 2.03666 2.03666i 0.0708646 0.0708646i
\(827\) 23.9764 23.9764i 0.833742 0.833742i −0.154284 0.988027i \(-0.549307\pi\)
0.988027 + 0.154284i \(0.0493071\pi\)
\(828\) −30.6530 30.6530i −1.06526 1.06526i
\(829\) 8.18134 0.284150 0.142075 0.989856i \(-0.454623\pi\)
0.142075 + 0.989856i \(0.454623\pi\)
\(830\) 0 0
\(831\) 16.1872i 0.561527i
\(832\) 27.4078 0.950195
\(833\) 10.2742 4.62695i 0.355980 0.160314i
\(834\) 9.83507 0.340561
\(835\) 0 0
\(836\) 2.64222 + 2.64222i 0.0913832 + 0.0913832i
\(837\) 3.87600 0.133974
\(838\) −4.33181 4.33181i −0.149640 0.149640i
\(839\) −15.5381 + 15.5381i −0.536436 + 0.536436i −0.922480 0.386045i \(-0.873841\pi\)
0.386045 + 0.922480i \(0.373841\pi\)
\(840\) 0 0
\(841\) 27.9257i 0.962956i
\(842\) 1.84589i 0.0636135i
\(843\) 30.5371 30.5371i 1.05175 1.05175i
\(844\) −17.6547 + 17.6547i −0.607701 + 0.607701i
\(845\) 0 0
\(846\) 2.29012 0.0787361
\(847\) 15.7308 + 15.7308i 0.540515 + 0.540515i
\(848\) 22.6240i 0.776912i
\(849\) −60.3771 −2.07214
\(850\) 0 0
\(851\) −10.5709 −0.362365
\(852\) 8.47023i 0.290185i
\(853\) −26.1383 26.1383i −0.894959 0.894959i 0.100026 0.994985i \(-0.468107\pi\)
−0.994985 + 0.100026i \(0.968107\pi\)
\(854\) 2.71555 0.0929242
\(855\) 0 0
\(856\) 3.37902 3.37902i 0.115493 0.115493i
\(857\) −10.6231 + 10.6231i −0.362879 + 0.362879i −0.864872 0.501993i \(-0.832600\pi\)
0.501993 + 0.864872i \(0.332600\pi\)
\(858\) 1.08732i 0.0371206i
\(859\) 40.2180i 1.37222i −0.727498 0.686110i \(-0.759317\pi\)
0.727498 0.686110i \(-0.240683\pi\)
\(860\) 0 0
\(861\) −37.7126 + 37.7126i −1.28524 + 1.28524i
\(862\) 1.86337 + 1.86337i 0.0634668 + 0.0634668i
\(863\) 12.3865 0.421643 0.210822 0.977525i \(-0.432386\pi\)
0.210822 + 0.977525i \(0.432386\pi\)
\(864\) 1.21602 + 1.21602i 0.0413698 + 0.0413698i
\(865\) 0 0
\(866\) −1.45136 −0.0493192
\(867\) 40.6285 2.47672i 1.37981 0.0841139i
\(868\) −24.3623 −0.826911
\(869\) 4.90933i 0.166538i
\(870\) 0 0
\(871\) −12.7869 −0.433267
\(872\) −5.25710 5.25710i −0.178028 0.178028i
\(873\) −32.3084 + 32.3084i −1.09347 + 1.09347i
\(874\) 5.35778 5.35778i 0.181229 0.181229i
\(875\) 0 0
\(876\) 56.7097i 1.91604i
\(877\) −31.9433 + 31.9433i −1.07865 + 1.07865i −0.0820188 + 0.996631i \(0.526137\pi\)
−0.996631 + 0.0820188i \(0.973863\pi\)
\(878\) 1.73003 1.73003i 0.0583857 0.0583857i
\(879\) −44.4570 44.4570i −1.49950 1.49950i
\(880\) 0 0
\(881\) −12.0367 12.0367i −0.405525 0.405525i 0.474649 0.880175i \(-0.342575\pi\)
−0.880175 + 0.474649i \(0.842575\pi\)
\(882\) 1.73565i 0.0584423i
\(883\) −13.3497 −0.449254 −0.224627 0.974445i \(-0.572116\pi\)
−0.224627 + 0.974445i \(0.572116\pi\)
\(884\) −13.4118 29.7811i −0.451087 1.00165i
\(885\) 0 0
\(886\) 6.80132i 0.228495i
\(887\) 31.4868 + 31.4868i 1.05722 + 1.05722i 0.998260 + 0.0589646i \(0.0187799\pi\)
0.0589646 + 0.998260i \(0.481220\pi\)
\(888\) −2.84739 −0.0955522
\(889\) −4.35778 4.35778i −0.146155 0.146155i
\(890\) 0 0
\(891\) −3.30278 + 3.30278i −0.110647 + 0.110647i
\(892\) 7.92163i 0.265236i
\(893\) 14.4238i 0.482675i
\(894\) 2.88048 2.88048i 0.0963377 0.0963377i
\(895\) 0 0
\(896\) −10.1408 10.1408i −0.338779 0.338779i
\(897\) 79.4480 2.65269
\(898\) −5.37790 5.37790i −0.179463 0.179463i
\(899\) 6.28153i 0.209501i
\(900\) 0 0
\(901\) 23.1195 10.4118i 0.770223 0.346867i
\(902\) 1.20295 0.0400538
\(903\) 36.8815i 1.22734i
\(904\) 2.25268 + 2.25268i 0.0749231 + 0.0749231i
\(905\) 0 0
\(906\) 2.93740 + 2.93740i 0.0975887 + 0.0975887i
\(907\) −23.2958 + 23.2958i −0.773526 + 0.773526i −0.978721 0.205195i \(-0.934217\pi\)
0.205195 + 0.978721i \(0.434217\pi\)
\(908\) 21.7061 21.7061i 0.720342 0.720342i
\(909\) 12.0569i 0.399903i
\(910\) 0 0
\(911\) 25.1630 25.1630i 0.833688 0.833688i −0.154332 0.988019i \(-0.549322\pi\)
0.988019 + 0.154332i \(0.0493224\pi\)
\(912\) −24.9143 + 24.9143i −0.824994 + 0.824994i
\(913\) −0.759241 0.759241i −0.0251272 0.0251272i
\(914\) −7.31450 −0.241942
\(915\) 0 0
\(916\) 29.0848i 0.960990i
\(917\) 14.8601 0.490725
\(918\) 0.217165 0.573022i 0.00716750 0.0189125i
\(919\) −28.5997 −0.943418 −0.471709 0.881754i \(-0.656363\pi\)
−0.471709 + 0.881754i \(0.656363\pi\)
\(920\) 0 0
\(921\) 23.5565 + 23.5565i 0.776212 + 0.776212i
\(922\) −6.19183 −0.203917
\(923\) 5.23268 + 5.23268i 0.172236 + 0.172236i
\(924\) 3.26711 3.26711i 0.107480 0.107480i
\(925\) 0 0
\(926\) 3.30085i 0.108473i
\(927\) 47.6407i 1.56473i
\(928\) −1.97071 + 1.97071i −0.0646917 + 0.0646917i
\(929\) 8.98266 8.98266i 0.294711 0.294711i −0.544227 0.838938i \(-0.683177\pi\)
0.838938 + 0.544227i \(0.183177\pi\)
\(930\) 0 0
\(931\) 10.9316 0.358268
\(932\) −1.00083 1.00083i −0.0327832 0.0327832i
\(933\) 20.9274i 0.685131i
\(934\) −6.76664 −0.221411
\(935\) 0 0
\(936\) 10.2016 0.333450
\(937\) 30.7655i 1.00506i 0.864558 + 0.502532i \(0.167598\pi\)
−0.864558 + 0.502532i \(0.832402\pi\)
\(938\) 1.06625 + 1.06625i 0.0348144 + 0.0348144i
\(939\) −16.6364 −0.542908
\(940\) 0 0
\(941\) −27.7522 + 27.7522i −0.904696 + 0.904696i −0.995838 0.0911416i \(-0.970948\pi\)
0.0911416 + 0.995838i \(0.470948\pi\)
\(942\) 4.90125 4.90125i 0.159691 0.159691i
\(943\) 87.8965i 2.86230i
\(944\) 22.0733i 0.718426i
\(945\) 0 0
\(946\) 0.588220 0.588220i 0.0191247 0.0191247i
\(947\) 2.52289 + 2.52289i 0.0819830 + 0.0819830i 0.746909 0.664926i \(-0.231537\pi\)
−0.664926 + 0.746909i \(0.731537\pi\)
\(948\) 47.6506 1.54762
\(949\) 35.0337 + 35.0337i 1.13724 + 1.13724i
\(950\) 0 0
\(951\) −10.1022 −0.327586
\(952\) −2.76783 + 7.30334i −0.0897059 + 0.236703i
\(953\) 53.8491 1.74434 0.872172 0.489200i \(-0.162711\pi\)
0.872172 + 0.489200i \(0.162711\pi\)
\(954\) 3.90564i 0.126450i
\(955\) 0 0
\(956\) 18.6306 0.602555
\(957\) −0.842384 0.842384i −0.0272304 0.0272304i
\(958\) 0.323145 0.323145i 0.0104403 0.0104403i
\(959\) 0.769556 0.769556i 0.0248503 0.0248503i
\(960\) 0 0
\(961\) 5.72998i 0.184838i
\(962\) 0.867484 0.867484i 0.0279688 0.0279688i
\(963\) −10.0703 + 10.0703i −0.324510 + 0.324510i
\(964\) 11.6760 + 11.6760i 0.376058 + 0.376058i
\(965\) 0 0
\(966\) −6.62488 6.62488i −0.213152 0.213152i
\(967\) 14.6688i 0.471716i 0.971788 + 0.235858i \(0.0757900\pi\)
−0.971788 + 0.235858i \(0.924210\pi\)
\(968\) 9.87576 0.317419
\(969\) 36.9257 + 13.9942i 1.18623 + 0.449557i
\(970\) 0 0
\(971\) 14.2468i 0.457203i 0.973520 + 0.228602i \(0.0734153\pi\)
−0.973520 + 0.228602i \(0.926585\pi\)
\(972\) −29.4171 29.4171i −0.943553 0.943553i
\(973\) −36.5125 −1.17054
\(974\) 0.794499 + 0.794499i 0.0254574 + 0.0254574i
\(975\) 0 0
\(976\) −14.7156 + 14.7156i −0.471033 + 0.471033i
\(977\) 20.9141i 0.669103i −0.942378 0.334551i \(-0.891415\pi\)
0.942378 0.334551i \(-0.108585\pi\)
\(978\) 4.76722i 0.152439i
\(979\) −3.18134 + 3.18134i −0.101676 + 0.101676i
\(980\) 0 0
\(981\) 15.6674 + 15.6674i 0.500221 + 0.500221i
\(982\) −3.92620 −0.125290
\(983\) −12.3036 12.3036i −0.392425 0.392425i 0.483126 0.875551i \(-0.339501\pi\)
−0.875551 + 0.483126i \(0.839501\pi\)
\(984\) 23.6760i 0.754762i
\(985\) 0 0
\(986\) 0.928654 + 0.351942i 0.0295744 + 0.0112081i
\(987\) −17.8350 −0.567696
\(988\) 31.6865i 1.00808i
\(989\) 42.9797 + 42.9797i 1.36668 + 1.36668i
\(990\) 0 0
\(991\) 3.73190 + 3.73190i 0.118548 + 0.118548i 0.763892 0.645344i \(-0.223286\pi\)
−0.645344 + 0.763892i \(0.723286\pi\)
\(992\) −11.5233 + 11.5233i −0.365866 + 0.365866i
\(993\) 23.1542 23.1542i 0.734777 0.734777i
\(994\) 0.872669i 0.0276794i
\(995\) 0 0
\(996\) 7.36928 7.36928i 0.233505 0.233505i
\(997\) 18.1295 18.1295i 0.574167 0.574167i −0.359123 0.933290i \(-0.616924\pi\)
0.933290 + 0.359123i \(0.116924\pi\)
\(998\) 0.713978 + 0.713978i 0.0226006 + 0.0226006i
\(999\) −0.829394 −0.0262409
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.e.d.251.3 12
5.2 odd 4 85.2.j.c.64.4 yes 12
5.3 odd 4 85.2.j.c.64.3 yes 12
5.4 even 2 inner 425.2.e.d.251.4 12
15.2 even 4 765.2.t.e.64.3 12
15.8 even 4 765.2.t.e.64.4 12
17.2 even 8 7225.2.a.bp.1.7 12
17.4 even 4 inner 425.2.e.d.276.4 12
17.15 even 8 7225.2.a.bp.1.8 12
85.2 odd 8 1445.2.b.f.579.8 12
85.4 even 4 inner 425.2.e.d.276.3 12
85.19 even 8 7225.2.a.bp.1.6 12
85.32 odd 8 1445.2.b.f.579.7 12
85.38 odd 4 85.2.j.c.4.4 yes 12
85.49 even 8 7225.2.a.bp.1.5 12
85.53 odd 8 1445.2.b.f.579.5 12
85.72 odd 4 85.2.j.c.4.3 12
85.83 odd 8 1445.2.b.f.579.6 12
255.38 even 4 765.2.t.e.514.3 12
255.242 even 4 765.2.t.e.514.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.3 12 85.72 odd 4
85.2.j.c.4.4 yes 12 85.38 odd 4
85.2.j.c.64.3 yes 12 5.3 odd 4
85.2.j.c.64.4 yes 12 5.2 odd 4
425.2.e.d.251.3 12 1.1 even 1 trivial
425.2.e.d.251.4 12 5.4 even 2 inner
425.2.e.d.276.3 12 85.4 even 4 inner
425.2.e.d.276.4 12 17.4 even 4 inner
765.2.t.e.64.3 12 15.2 even 4
765.2.t.e.64.4 12 15.8 even 4
765.2.t.e.514.3 12 255.38 even 4
765.2.t.e.514.4 12 255.242 even 4
1445.2.b.f.579.5 12 85.53 odd 8
1445.2.b.f.579.6 12 85.83 odd 8
1445.2.b.f.579.7 12 85.32 odd 8
1445.2.b.f.579.8 12 85.2 odd 8
7225.2.a.bp.1.5 12 85.49 even 8
7225.2.a.bp.1.6 12 85.19 even 8
7225.2.a.bp.1.7 12 17.2 even 8
7225.2.a.bp.1.8 12 17.15 even 8