L(s) = 1 | + (0.885 − 2.13i)2-s + (4.16 + 2.78i)3-s + (−0.954 − 0.954i)4-s + (9.62 − 6.43i)6-s + (−0.970 − 0.193i)7-s + (5.66 − 2.34i)8-s + (6.14 + 14.8i)9-s + (0.201 + 0.301i)11-s + (−1.31 − 6.62i)12-s + (4.39 − 4.39i)13-s + (−1.27 + 1.90i)14-s − 19.5i·16-s + (16.8 + 1.86i)17-s + 37.1·18-s + (−9.20 + 22.2i)19-s + ⋯ |
L(s) = 1 | + (0.442 − 1.06i)2-s + (1.38 + 0.926i)3-s + (−0.238 − 0.238i)4-s + (1.60 − 1.07i)6-s + (−0.138 − 0.0275i)7-s + (0.707 − 0.293i)8-s + (0.682 + 1.64i)9-s + (0.0183 + 0.0274i)11-s + (−0.109 − 0.552i)12-s + (0.338 − 0.338i)13-s + (−0.0908 + 0.135i)14-s − 1.22i·16-s + (0.993 + 0.109i)17-s + 2.06·18-s + (−0.484 + 1.16i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.343i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.939 + 0.343i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.68298 - 0.652030i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.68298 - 0.652030i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-16.8 - 1.86i)T \) |
good | 2 | \( 1 + (-0.885 + 2.13i)T + (-2.82 - 2.82i)T^{2} \) |
| 3 | \( 1 + (-4.16 - 2.78i)T + (3.44 + 8.31i)T^{2} \) |
| 7 | \( 1 + (0.970 + 0.193i)T + (45.2 + 18.7i)T^{2} \) |
| 11 | \( 1 + (-0.201 - 0.301i)T + (-46.3 + 111. i)T^{2} \) |
| 13 | \( 1 + (-4.39 + 4.39i)T - 169iT^{2} \) |
| 19 | \( 1 + (9.20 - 22.2i)T + (-255. - 255. i)T^{2} \) |
| 23 | \( 1 + (21.5 - 14.4i)T + (202. - 488. i)T^{2} \) |
| 29 | \( 1 + (8.40 + 42.2i)T + (-776. + 321. i)T^{2} \) |
| 31 | \( 1 + (-9.36 + 14.0i)T + (-367. - 887. i)T^{2} \) |
| 37 | \( 1 + (17.9 + 12.0i)T + (523. + 1.26e3i)T^{2} \) |
| 41 | \( 1 + (-67.7 - 13.4i)T + (1.55e3 + 643. i)T^{2} \) |
| 43 | \( 1 + (-2.12 - 5.12i)T + (-1.30e3 + 1.30e3i)T^{2} \) |
| 47 | \( 1 + (60.9 - 60.9i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (6.20 - 14.9i)T + (-1.98e3 - 1.98e3i)T^{2} \) |
| 59 | \( 1 + (-60.5 + 25.0i)T + (2.46e3 - 2.46e3i)T^{2} \) |
| 61 | \( 1 + (-2.42 + 12.1i)T + (-3.43e3 - 1.42e3i)T^{2} \) |
| 67 | \( 1 + 39.4iT - 4.48e3T^{2} \) |
| 71 | \( 1 + (65.4 + 43.7i)T + (1.92e3 + 4.65e3i)T^{2} \) |
| 73 | \( 1 + (-0.347 + 0.0692i)T + (4.92e3 - 2.03e3i)T^{2} \) |
| 79 | \( 1 + (44.3 + 66.3i)T + (-2.38e3 + 5.76e3i)T^{2} \) |
| 83 | \( 1 + (79.3 + 32.8i)T + (4.87e3 + 4.87e3i)T^{2} \) |
| 89 | \( 1 + (120. + 120. i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (-17.2 - 86.7i)T + (-8.69e3 + 3.60e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78236536679074358936439184410, −9.917314032791620924465613549435, −9.592877222163549091828176781045, −8.138342253442482129895682265769, −7.74412824428667230903037251276, −5.89574859122293611795483882588, −4.39070777189745474284425136385, −3.72863098322891005237160187657, −2.92050293912616876957534089555, −1.77340738246629389283214507139,
1.52163738431668723502578028929, 2.81123460814806067028330675801, 4.11345920029663619302507045563, 5.48788938409516591742157231830, 6.71594645967084014960504690360, 7.10966002992510909014322489096, 8.183107549120362251254704761196, 8.673207070424072844506356036370, 9.830079028949241285148977462043, 11.04620702736883346248862795579