L(s) = 1 | − i·3-s + (−1.58 + 1.58i)5-s + (−1.58 + 1.58i)7-s + 2·9-s + (4.16 − 4.16i)11-s + (3.58 + 0.418i)13-s + (1.58 + 1.58i)15-s + 7.32i·17-s + (1.16 + 1.16i)19-s + (1.58 + 1.58i)21-s + 7.16·23-s − 5i·27-s − 1.16·29-s + (−1.16 − 1.16i)31-s + (−4.16 − 4.16i)33-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.707 + 0.707i)5-s + (−0.597 + 0.597i)7-s + 0.666·9-s + (1.25 − 1.25i)11-s + (0.993 + 0.116i)13-s + (0.408 + 0.408i)15-s + 1.77i·17-s + (0.266 + 0.266i)19-s + (0.345 + 0.345i)21-s + 1.49·23-s − 0.962i·27-s − 0.215·29-s + (−0.208 − 0.208i)31-s + (−0.724 − 0.724i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.176i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 - 0.176i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.32953 + 0.118351i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32953 + 0.118351i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-3.58 - 0.418i)T \) |
good | 3 | \( 1 + iT - 3T^{2} \) |
| 5 | \( 1 + (1.58 - 1.58i)T - 5iT^{2} \) |
| 7 | \( 1 + (1.58 - 1.58i)T - 7iT^{2} \) |
| 11 | \( 1 + (-4.16 + 4.16i)T - 11iT^{2} \) |
| 17 | \( 1 - 7.32iT - 17T^{2} \) |
| 19 | \( 1 + (-1.16 - 1.16i)T + 19iT^{2} \) |
| 23 | \( 1 - 7.16T + 23T^{2} \) |
| 29 | \( 1 + 1.16T + 29T^{2} \) |
| 31 | \( 1 + (1.16 + 1.16i)T + 31iT^{2} \) |
| 37 | \( 1 + (3.58 + 3.58i)T + 37iT^{2} \) |
| 41 | \( 1 + (-5.16 + 5.16i)T - 41iT^{2} \) |
| 43 | \( 1 + 5T + 43T^{2} \) |
| 47 | \( 1 + (6.74 - 6.74i)T - 47iT^{2} \) |
| 53 | \( 1 - 9.48T + 53T^{2} \) |
| 59 | \( 1 + (4 - 4i)T - 59iT^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + (7.32 + 7.32i)T + 67iT^{2} \) |
| 71 | \( 1 + (1.58 + 1.58i)T + 71iT^{2} \) |
| 73 | \( 1 + (6 + 6i)T + 73iT^{2} \) |
| 79 | \( 1 + 3.48iT - 79T^{2} \) |
| 83 | \( 1 + (-5.83 - 5.83i)T + 83iT^{2} \) |
| 89 | \( 1 + (2.83 + 2.83i)T + 89iT^{2} \) |
| 97 | \( 1 + (3.83 - 3.83i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.21099385668825825741397662566, −10.62139598513155544565657799330, −9.208069948101888539678208352365, −8.527541852753756860544006291176, −7.42451545023285964706178686726, −6.47447744590984896716212535394, −5.93501140011661582698058221313, −3.93994847228992022849843275917, −3.28760533636346068304922633387, −1.40064698712683332706225680158,
1.11482002652163050123247441336, 3.39044324178106615893187933425, 4.31733002795279148427775541180, 5.00075067304222311909214820900, 6.83132490313818765493130250903, 7.21494608279508074477071064344, 8.688137590907587223340453864870, 9.445178302844407111346128072562, 10.07718615347605479207250082621, 11.28330529111082331356784376077