L(s) = 1 | − i·3-s + (−1.58 + 1.58i)5-s + (−1.58 + 1.58i)7-s + 2·9-s + (4.16 − 4.16i)11-s + (3.58 + 0.418i)13-s + (1.58 + 1.58i)15-s + 7.32i·17-s + (1.16 + 1.16i)19-s + (1.58 + 1.58i)21-s + 7.16·23-s − 5i·27-s − 1.16·29-s + (−1.16 − 1.16i)31-s + (−4.16 − 4.16i)33-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.707 + 0.707i)5-s + (−0.597 + 0.597i)7-s + 0.666·9-s + (1.25 − 1.25i)11-s + (0.993 + 0.116i)13-s + (0.408 + 0.408i)15-s + 1.77i·17-s + (0.266 + 0.266i)19-s + (0.345 + 0.345i)21-s + 1.49·23-s − 0.962i·27-s − 0.215·29-s + (−0.208 − 0.208i)31-s + (−0.724 − 0.724i)33-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.984−0.176i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.984−0.176i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.984−0.176i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.984−0.176i)
|
Particular Values
L(1) |
≈ |
1.32953+0.118351i |
L(21) |
≈ |
1.32953+0.118351i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−3.58−0.418i)T |
good | 3 | 1+iT−3T2 |
| 5 | 1+(1.58−1.58i)T−5iT2 |
| 7 | 1+(1.58−1.58i)T−7iT2 |
| 11 | 1+(−4.16+4.16i)T−11iT2 |
| 17 | 1−7.32iT−17T2 |
| 19 | 1+(−1.16−1.16i)T+19iT2 |
| 23 | 1−7.16T+23T2 |
| 29 | 1+1.16T+29T2 |
| 31 | 1+(1.16+1.16i)T+31iT2 |
| 37 | 1+(3.58+3.58i)T+37iT2 |
| 41 | 1+(−5.16+5.16i)T−41iT2 |
| 43 | 1+5T+43T2 |
| 47 | 1+(6.74−6.74i)T−47iT2 |
| 53 | 1−9.48T+53T2 |
| 59 | 1+(4−4i)T−59iT2 |
| 61 | 1−2T+61T2 |
| 67 | 1+(7.32+7.32i)T+67iT2 |
| 71 | 1+(1.58+1.58i)T+71iT2 |
| 73 | 1+(6+6i)T+73iT2 |
| 79 | 1+3.48iT−79T2 |
| 83 | 1+(−5.83−5.83i)T+83iT2 |
| 89 | 1+(2.83+2.83i)T+89iT2 |
| 97 | 1+(3.83−3.83i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.21099385668825825741397662566, −10.62139598513155544565657799330, −9.208069948101888539678208352365, −8.527541852753756860544006291176, −7.42451545023285964706178686726, −6.47447744590984896716212535394, −5.93501140011661582698058221313, −3.93994847228992022849843275917, −3.28760533636346068304922633387, −1.40064698712683332706225680158,
1.11482002652163050123247441336, 3.39044324178106615893187933425, 4.31733002795279148427775541180, 5.00075067304222311909214820900, 6.83132490313818765493130250903, 7.21494608279508074477071064344, 8.688137590907587223340453864870, 9.445178302844407111346128072562, 10.07718615347605479207250082621, 11.28330529111082331356784376077