L(s) = 1 | + i·3-s + (−1.58 − 1.58i)5-s + (−1.58 − 1.58i)7-s + 2·9-s + (4.16 + 4.16i)11-s + (3.58 − 0.418i)13-s + (1.58 − 1.58i)15-s − 7.32i·17-s + (1.16 − 1.16i)19-s + (1.58 − 1.58i)21-s + 7.16·23-s + 5i·27-s − 1.16·29-s + (−1.16 + 1.16i)31-s + (−4.16 + 4.16i)33-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.707 − 0.707i)5-s + (−0.597 − 0.597i)7-s + 0.666·9-s + (1.25 + 1.25i)11-s + (0.993 − 0.116i)13-s + (0.408 − 0.408i)15-s − 1.77i·17-s + (0.266 − 0.266i)19-s + (0.345 − 0.345i)21-s + 1.49·23-s + 0.962i·27-s − 0.215·29-s + (−0.208 + 0.208i)31-s + (−0.724 + 0.724i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 + 0.176i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 + 0.176i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.32953 - 0.118351i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32953 - 0.118351i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-3.58 + 0.418i)T \) |
good | 3 | \( 1 - iT - 3T^{2} \) |
| 5 | \( 1 + (1.58 + 1.58i)T + 5iT^{2} \) |
| 7 | \( 1 + (1.58 + 1.58i)T + 7iT^{2} \) |
| 11 | \( 1 + (-4.16 - 4.16i)T + 11iT^{2} \) |
| 17 | \( 1 + 7.32iT - 17T^{2} \) |
| 19 | \( 1 + (-1.16 + 1.16i)T - 19iT^{2} \) |
| 23 | \( 1 - 7.16T + 23T^{2} \) |
| 29 | \( 1 + 1.16T + 29T^{2} \) |
| 31 | \( 1 + (1.16 - 1.16i)T - 31iT^{2} \) |
| 37 | \( 1 + (3.58 - 3.58i)T - 37iT^{2} \) |
| 41 | \( 1 + (-5.16 - 5.16i)T + 41iT^{2} \) |
| 43 | \( 1 + 5T + 43T^{2} \) |
| 47 | \( 1 + (6.74 + 6.74i)T + 47iT^{2} \) |
| 53 | \( 1 - 9.48T + 53T^{2} \) |
| 59 | \( 1 + (4 + 4i)T + 59iT^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + (7.32 - 7.32i)T - 67iT^{2} \) |
| 71 | \( 1 + (1.58 - 1.58i)T - 71iT^{2} \) |
| 73 | \( 1 + (6 - 6i)T - 73iT^{2} \) |
| 79 | \( 1 - 3.48iT - 79T^{2} \) |
| 83 | \( 1 + (-5.83 + 5.83i)T - 83iT^{2} \) |
| 89 | \( 1 + (2.83 - 2.83i)T - 89iT^{2} \) |
| 97 | \( 1 + (3.83 + 3.83i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28330529111082331356784376077, −10.07718615347605479207250082621, −9.445178302844407111346128072562, −8.688137590907587223340453864870, −7.21494608279508074477071064344, −6.83132490313818765493130250903, −5.00075067304222311909214820900, −4.31733002795279148427775541180, −3.39044324178106615893187933425, −1.11482002652163050123247441336,
1.40064698712683332706225680158, 3.28760533636346068304922633387, 3.93994847228992022849843275917, 5.93501140011661582698058221313, 6.47447744590984896716212535394, 7.42451545023285964706178686726, 8.527541852753756860544006291176, 9.208069948101888539678208352365, 10.62139598513155544565657799330, 11.21099385668825825741397662566