L(s) = 1 | + (−0.705 + 1.22i)2-s + (3.06 − 1.26i)3-s + (−1.00 − 1.72i)4-s + (0.112 − 0.272i)5-s + (−0.604 + 4.65i)6-s + (−1.80 − 1.80i)7-s + (2.82 − 0.0142i)8-s + (5.66 − 5.66i)9-s + (0.254 + 0.330i)10-s + (−2.10 − 0.872i)11-s + (−5.27 − 4.02i)12-s + (−0.382 − 0.923i)13-s + (3.49 − 0.942i)14-s − 0.978i·15-s + (−1.97 + 3.47i)16-s − 3.28i·17-s + ⋯ |
L(s) = 1 | + (−0.498 + 0.866i)2-s + (1.76 − 0.733i)3-s + (−0.502 − 0.864i)4-s + (0.0504 − 0.121i)5-s + (−0.246 + 1.89i)6-s + (−0.683 − 0.683i)7-s + (0.999 − 0.00503i)8-s + (1.88 − 1.88i)9-s + (0.0804 + 0.104i)10-s + (−0.635 − 0.263i)11-s + (−1.52 − 1.16i)12-s + (−0.106 − 0.256i)13-s + (0.933 − 0.251i)14-s − 0.252i·15-s + (−0.494 + 0.869i)16-s − 0.796i·17-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.900+0.434i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.900+0.434i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.900+0.434i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.900+0.434i)
|
Particular Values
L(1) |
≈ |
1.66480−0.380827i |
L(21) |
≈ |
1.66480−0.380827i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.705−1.22i)T |
| 13 | 1+(0.382+0.923i)T |
good | 3 | 1+(−3.06+1.26i)T+(2.12−2.12i)T2 |
| 5 | 1+(−0.112+0.272i)T+(−3.53−3.53i)T2 |
| 7 | 1+(1.80+1.80i)T+7iT2 |
| 11 | 1+(2.10+0.872i)T+(7.77+7.77i)T2 |
| 17 | 1+3.28iT−17T2 |
| 19 | 1+(−2.88−6.96i)T+(−13.4+13.4i)T2 |
| 23 | 1+(−1.45+1.45i)T−23iT2 |
| 29 | 1+(7.19−2.98i)T+(20.5−20.5i)T2 |
| 31 | 1−1.16T+31T2 |
| 37 | 1+(−1.93+4.67i)T+(−26.1−26.1i)T2 |
| 41 | 1+(1.89−1.89i)T−41iT2 |
| 43 | 1+(−9.69−4.01i)T+(30.4+30.4i)T2 |
| 47 | 1−10.8iT−47T2 |
| 53 | 1+(−6.82−2.82i)T+(37.4+37.4i)T2 |
| 59 | 1+(1.41−3.42i)T+(−41.7−41.7i)T2 |
| 61 | 1+(3.10−1.28i)T+(43.1−43.1i)T2 |
| 67 | 1+(2.33−0.966i)T+(47.3−47.3i)T2 |
| 71 | 1+(−3.12−3.12i)T+71iT2 |
| 73 | 1+(−1.58+1.58i)T−73iT2 |
| 79 | 1−15.9iT−79T2 |
| 83 | 1+(−1.02−2.47i)T+(−58.6+58.6i)T2 |
| 89 | 1+(5.24+5.24i)T+89iT2 |
| 97 | 1+5.34T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73257543689573844876353444278, −9.680858746276130612484275115851, −9.254932180065360623497142983438, −8.197664334989477962107673188815, −7.52201728360333047792761597069, −6.98928393763668145356291748406, −5.69038402301926331667775798826, −4.02501046614192924067452124004, −2.87790544769881024505718925353, −1.20483894783509966937687639681,
2.21817099434297888204050207626, 2.88901046458464814499449274698, 3.87867102541299790008120591028, 5.00450393358026652084033995084, 7.09731868709974497543551539918, 8.002790124869597470822274973405, 8.934473687152927753033616971524, 9.332377314654938639370866310934, 10.14362340800335090968849989533, 10.90912200384046963151457890936