L(s) = 1 | + (−0.705 − 1.22i)2-s + (3.06 + 1.26i)3-s + (−1.00 + 1.72i)4-s + (0.112 + 0.272i)5-s + (−0.604 − 4.65i)6-s + (−1.80 + 1.80i)7-s + (2.82 + 0.0142i)8-s + (5.66 + 5.66i)9-s + (0.254 − 0.330i)10-s + (−2.10 + 0.872i)11-s + (−5.27 + 4.02i)12-s + (−0.382 + 0.923i)13-s + (3.49 + 0.942i)14-s + 0.978i·15-s + (−1.97 − 3.47i)16-s + 3.28i·17-s + ⋯ |
L(s) = 1 | + (−0.498 − 0.866i)2-s + (1.76 + 0.733i)3-s + (−0.502 + 0.864i)4-s + (0.0504 + 0.121i)5-s + (−0.246 − 1.89i)6-s + (−0.683 + 0.683i)7-s + (0.999 + 0.00503i)8-s + (1.88 + 1.88i)9-s + (0.0804 − 0.104i)10-s + (−0.635 + 0.263i)11-s + (−1.52 + 1.16i)12-s + (−0.106 + 0.256i)13-s + (0.933 + 0.251i)14-s + 0.252i·15-s + (−0.494 − 0.869i)16-s + 0.796i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.900 - 0.434i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.900 - 0.434i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.66480 + 0.380827i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.66480 + 0.380827i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.705 + 1.22i)T \) |
| 13 | \( 1 + (0.382 - 0.923i)T \) |
good | 3 | \( 1 + (-3.06 - 1.26i)T + (2.12 + 2.12i)T^{2} \) |
| 5 | \( 1 + (-0.112 - 0.272i)T + (-3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (1.80 - 1.80i)T - 7iT^{2} \) |
| 11 | \( 1 + (2.10 - 0.872i)T + (7.77 - 7.77i)T^{2} \) |
| 17 | \( 1 - 3.28iT - 17T^{2} \) |
| 19 | \( 1 + (-2.88 + 6.96i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (-1.45 - 1.45i)T + 23iT^{2} \) |
| 29 | \( 1 + (7.19 + 2.98i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 - 1.16T + 31T^{2} \) |
| 37 | \( 1 + (-1.93 - 4.67i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (1.89 + 1.89i)T + 41iT^{2} \) |
| 43 | \( 1 + (-9.69 + 4.01i)T + (30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + 10.8iT - 47T^{2} \) |
| 53 | \( 1 + (-6.82 + 2.82i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (1.41 + 3.42i)T + (-41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (3.10 + 1.28i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + (2.33 + 0.966i)T + (47.3 + 47.3i)T^{2} \) |
| 71 | \( 1 + (-3.12 + 3.12i)T - 71iT^{2} \) |
| 73 | \( 1 + (-1.58 - 1.58i)T + 73iT^{2} \) |
| 79 | \( 1 + 15.9iT - 79T^{2} \) |
| 83 | \( 1 + (-1.02 + 2.47i)T + (-58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (5.24 - 5.24i)T - 89iT^{2} \) |
| 97 | \( 1 + 5.34T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90912200384046963151457890936, −10.14362340800335090968849989533, −9.332377314654938639370866310934, −8.934473687152927753033616971524, −8.002790124869597470822274973405, −7.09731868709974497543551539918, −5.00450393358026652084033995084, −3.87867102541299790008120591028, −2.88901046458464814499449274698, −2.21817099434297888204050207626,
1.20483894783509966937687639681, 2.87790544769881024505718925353, 4.02501046614192924067452124004, 5.69038402301926331667775798826, 6.98928393763668145356291748406, 7.52201728360333047792761597069, 8.197664334989477962107673188815, 9.254932180065360623497142983438, 9.680858746276130612484275115851, 10.73257543689573844876353444278