L(s) = 1 | + (−1.40 + 0.152i)2-s + (−0.435 + 0.180i)3-s + (1.95 − 0.427i)4-s + (0.326 − 0.788i)5-s + (0.585 − 0.320i)6-s + (1.89 + 1.89i)7-s + (−2.68 + 0.898i)8-s + (−1.96 + 1.96i)9-s + (−0.339 + 1.15i)10-s + (1.20 + 0.500i)11-s + (−0.774 + 0.539i)12-s + (−0.382 − 0.923i)13-s + (−2.94 − 2.37i)14-s + 0.402i·15-s + (3.63 − 1.67i)16-s + 1.89i·17-s + ⋯ |
L(s) = 1 | + (−0.994 + 0.107i)2-s + (−0.251 + 0.104i)3-s + (0.976 − 0.213i)4-s + (0.145 − 0.352i)5-s + (0.239 − 0.130i)6-s + (0.714 + 0.714i)7-s + (−0.948 + 0.317i)8-s + (−0.654 + 0.654i)9-s + (−0.107 + 0.366i)10-s + (0.364 + 0.150i)11-s + (−0.223 + 0.155i)12-s + (−0.106 − 0.256i)13-s + (−0.787 − 0.633i)14-s + 0.103i·15-s + (0.908 − 0.418i)16-s + 0.458i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.428 - 0.903i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.428 - 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.699118 + 0.442272i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.699118 + 0.442272i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.40 - 0.152i)T \) |
| 13 | \( 1 + (0.382 + 0.923i)T \) |
good | 3 | \( 1 + (0.435 - 0.180i)T + (2.12 - 2.12i)T^{2} \) |
| 5 | \( 1 + (-0.326 + 0.788i)T + (-3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (-1.89 - 1.89i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1.20 - 0.500i)T + (7.77 + 7.77i)T^{2} \) |
| 17 | \( 1 - 1.89iT - 17T^{2} \) |
| 19 | \( 1 + (-0.478 - 1.15i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (0.331 - 0.331i)T - 23iT^{2} \) |
| 29 | \( 1 + (-0.842 + 0.349i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 - 6.24T + 31T^{2} \) |
| 37 | \( 1 + (4.38 - 10.5i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (8.18 - 8.18i)T - 41iT^{2} \) |
| 43 | \( 1 + (-9.38 - 3.88i)T + (30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 - 4.42iT - 47T^{2} \) |
| 53 | \( 1 + (-1.51 - 0.626i)T + (37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-4.71 + 11.3i)T + (-41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-10.2 + 4.24i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + (0.969 - 0.401i)T + (47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (-5.81 - 5.81i)T + 71iT^{2} \) |
| 73 | \( 1 + (6.10 - 6.10i)T - 73iT^{2} \) |
| 79 | \( 1 + 4.79iT - 79T^{2} \) |
| 83 | \( 1 + (4.15 + 10.0i)T + (-58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (2.78 + 2.78i)T + 89iT^{2} \) |
| 97 | \( 1 + 15.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.38370985744105637745517607076, −10.38026376546088921599675710216, −9.544490982868037715850084926833, −8.358170603403198829930780284108, −8.213117755029727202933506287311, −6.75265325588550515244401823486, −5.71479160467744957991612749910, −4.87472708556401376884796608735, −2.85184991645459444407365153179, −1.52356058045961887022914078193,
0.814271679901212791286990174948, 2.47994573903582241138665026070, 3.87956793228244409625793902292, 5.51330234675057906639890013357, 6.68395375954733265753819140551, 7.27278892799193795072177567565, 8.472931262418226755235090412067, 9.135031652983562891653327181924, 10.28536411718911042932795765500, 10.90348539093745912603836948751