L(s) = 1 | + (−1.40 + 0.152i)2-s + (−0.435 + 0.180i)3-s + (1.95 − 0.427i)4-s + (0.326 − 0.788i)5-s + (0.585 − 0.320i)6-s + (1.89 + 1.89i)7-s + (−2.68 + 0.898i)8-s + (−1.96 + 1.96i)9-s + (−0.339 + 1.15i)10-s + (1.20 + 0.500i)11-s + (−0.774 + 0.539i)12-s + (−0.382 − 0.923i)13-s + (−2.94 − 2.37i)14-s + 0.402i·15-s + (3.63 − 1.67i)16-s + 1.89i·17-s + ⋯ |
L(s) = 1 | + (−0.994 + 0.107i)2-s + (−0.251 + 0.104i)3-s + (0.976 − 0.213i)4-s + (0.145 − 0.352i)5-s + (0.239 − 0.130i)6-s + (0.714 + 0.714i)7-s + (−0.948 + 0.317i)8-s + (−0.654 + 0.654i)9-s + (−0.107 + 0.366i)10-s + (0.364 + 0.150i)11-s + (−0.223 + 0.155i)12-s + (−0.106 − 0.256i)13-s + (−0.787 − 0.633i)14-s + 0.103i·15-s + (0.908 − 0.418i)16-s + 0.458i·17-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.428−0.903i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.428−0.903i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.428−0.903i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.428−0.903i)
|
Particular Values
L(1) |
≈ |
0.699118+0.442272i |
L(21) |
≈ |
0.699118+0.442272i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.40−0.152i)T |
| 13 | 1+(0.382+0.923i)T |
good | 3 | 1+(0.435−0.180i)T+(2.12−2.12i)T2 |
| 5 | 1+(−0.326+0.788i)T+(−3.53−3.53i)T2 |
| 7 | 1+(−1.89−1.89i)T+7iT2 |
| 11 | 1+(−1.20−0.500i)T+(7.77+7.77i)T2 |
| 17 | 1−1.89iT−17T2 |
| 19 | 1+(−0.478−1.15i)T+(−13.4+13.4i)T2 |
| 23 | 1+(0.331−0.331i)T−23iT2 |
| 29 | 1+(−0.842+0.349i)T+(20.5−20.5i)T2 |
| 31 | 1−6.24T+31T2 |
| 37 | 1+(4.38−10.5i)T+(−26.1−26.1i)T2 |
| 41 | 1+(8.18−8.18i)T−41iT2 |
| 43 | 1+(−9.38−3.88i)T+(30.4+30.4i)T2 |
| 47 | 1−4.42iT−47T2 |
| 53 | 1+(−1.51−0.626i)T+(37.4+37.4i)T2 |
| 59 | 1+(−4.71+11.3i)T+(−41.7−41.7i)T2 |
| 61 | 1+(−10.2+4.24i)T+(43.1−43.1i)T2 |
| 67 | 1+(0.969−0.401i)T+(47.3−47.3i)T2 |
| 71 | 1+(−5.81−5.81i)T+71iT2 |
| 73 | 1+(6.10−6.10i)T−73iT2 |
| 79 | 1+4.79iT−79T2 |
| 83 | 1+(4.15+10.0i)T+(−58.6+58.6i)T2 |
| 89 | 1+(2.78+2.78i)T+89iT2 |
| 97 | 1+15.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38370985744105637745517607076, −10.38026376546088921599675710216, −9.544490982868037715850084926833, −8.358170603403198829930780284108, −8.213117755029727202933506287311, −6.75265325588550515244401823486, −5.71479160467744957991612749910, −4.87472708556401376884796608735, −2.85184991645459444407365153179, −1.52356058045961887022914078193,
0.814271679901212791286990174948, 2.47994573903582241138665026070, 3.87956793228244409625793902292, 5.51330234675057906639890013357, 6.68395375954733265753819140551, 7.27278892799193795072177567565, 8.472931262418226755235090412067, 9.135031652983562891653327181924, 10.28536411718911042932795765500, 10.90348539093745912603836948751