L(s) = 1 | + (−1.40 − 0.152i)2-s + (−0.435 − 0.180i)3-s + (1.95 + 0.427i)4-s + (0.326 + 0.788i)5-s + (0.585 + 0.320i)6-s + (1.89 − 1.89i)7-s + (−2.68 − 0.898i)8-s + (−1.96 − 1.96i)9-s + (−0.339 − 1.15i)10-s + (1.20 − 0.500i)11-s + (−0.774 − 0.539i)12-s + (−0.382 + 0.923i)13-s + (−2.94 + 2.37i)14-s − 0.402i·15-s + (3.63 + 1.67i)16-s − 1.89i·17-s + ⋯ |
L(s) = 1 | + (−0.994 − 0.107i)2-s + (−0.251 − 0.104i)3-s + (0.976 + 0.213i)4-s + (0.145 + 0.352i)5-s + (0.239 + 0.130i)6-s + (0.714 − 0.714i)7-s + (−0.948 − 0.317i)8-s + (−0.654 − 0.654i)9-s + (−0.107 − 0.366i)10-s + (0.364 − 0.150i)11-s + (−0.223 − 0.155i)12-s + (−0.106 + 0.256i)13-s + (−0.787 + 0.633i)14-s − 0.103i·15-s + (0.908 + 0.418i)16-s − 0.458i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.428 + 0.903i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.428 + 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.699118 - 0.442272i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.699118 - 0.442272i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.40 + 0.152i)T \) |
| 13 | \( 1 + (0.382 - 0.923i)T \) |
good | 3 | \( 1 + (0.435 + 0.180i)T + (2.12 + 2.12i)T^{2} \) |
| 5 | \( 1 + (-0.326 - 0.788i)T + (-3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (-1.89 + 1.89i)T - 7iT^{2} \) |
| 11 | \( 1 + (-1.20 + 0.500i)T + (7.77 - 7.77i)T^{2} \) |
| 17 | \( 1 + 1.89iT - 17T^{2} \) |
| 19 | \( 1 + (-0.478 + 1.15i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (0.331 + 0.331i)T + 23iT^{2} \) |
| 29 | \( 1 + (-0.842 - 0.349i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 - 6.24T + 31T^{2} \) |
| 37 | \( 1 + (4.38 + 10.5i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (8.18 + 8.18i)T + 41iT^{2} \) |
| 43 | \( 1 + (-9.38 + 3.88i)T + (30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + 4.42iT - 47T^{2} \) |
| 53 | \( 1 + (-1.51 + 0.626i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (-4.71 - 11.3i)T + (-41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (-10.2 - 4.24i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + (0.969 + 0.401i)T + (47.3 + 47.3i)T^{2} \) |
| 71 | \( 1 + (-5.81 + 5.81i)T - 71iT^{2} \) |
| 73 | \( 1 + (6.10 + 6.10i)T + 73iT^{2} \) |
| 79 | \( 1 - 4.79iT - 79T^{2} \) |
| 83 | \( 1 + (4.15 - 10.0i)T + (-58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (2.78 - 2.78i)T - 89iT^{2} \) |
| 97 | \( 1 + 15.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90348539093745912603836948751, −10.28536411718911042932795765500, −9.135031652983562891653327181924, −8.472931262418226755235090412067, −7.27278892799193795072177567565, −6.68395375954733265753819140551, −5.51330234675057906639890013357, −3.87956793228244409625793902292, −2.47994573903582241138665026070, −0.814271679901212791286990174948,
1.52356058045961887022914078193, 2.85184991645459444407365153179, 4.87472708556401376884796608735, 5.71479160467744957991612749910, 6.75265325588550515244401823486, 8.213117755029727202933506287311, 8.358170603403198829930780284108, 9.544490982868037715850084926833, 10.38026376546088921599675710216, 11.38370985744105637745517607076