L(s) = 1 | + (0.207 + 0.358i)3-s − 2.82·5-s + (0.792 − 1.37i)7-s + (1.41 − 2.44i)9-s + (−2.62 − 4.54i)11-s + (−1 + 3.46i)13-s + (−0.585 − 1.01i)15-s + (0.0857 − 0.148i)17-s + (3.62 − 6.27i)19-s + 0.656·21-s + (−3.62 − 6.27i)23-s + 3.00·25-s + 2.41·27-s + (1.32 + 2.30i)29-s + 5.65·31-s + ⋯ |
L(s) = 1 | + (0.119 + 0.207i)3-s − 1.26·5-s + (0.299 − 0.519i)7-s + (0.471 − 0.816i)9-s + (−0.790 − 1.36i)11-s + (−0.277 + 0.960i)13-s + (−0.151 − 0.261i)15-s + (0.0208 − 0.0360i)17-s + (0.830 − 1.43i)19-s + 0.143·21-s + (−0.755 − 1.30i)23-s + 0.600·25-s + 0.464·27-s + (0.246 + 0.427i)29-s + 1.01·31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.0128+0.999i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.0128+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.0128+0.999i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.0128+0.999i)
|
Particular Values
L(1) |
≈ |
0.649541−0.657924i |
L(21) |
≈ |
0.649541−0.657924i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(1−3.46i)T |
good | 3 | 1+(−0.207−0.358i)T+(−1.5+2.59i)T2 |
| 5 | 1+2.82T+5T2 |
| 7 | 1+(−0.792+1.37i)T+(−3.5−6.06i)T2 |
| 11 | 1+(2.62+4.54i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−0.0857+0.148i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.62+6.27i)T+(−9.5−16.4i)T2 |
| 23 | 1+(3.62+6.27i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.32−2.30i)T+(−14.5+25.1i)T2 |
| 31 | 1−5.65T+31T2 |
| 37 | 1+(4.74+8.21i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−0.0857−0.148i)T+(−20.5+35.5i)T2 |
| 43 | 1+(5.03−8.72i)T+(−21.5−37.2i)T2 |
| 47 | 1+6T+47T2 |
| 53 | 1−2.82T+53T2 |
| 59 | 1+(−3.62+6.27i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3.5−6.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−2.37−4.11i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−0.621+1.07i)T+(−35.5−61.4i)T2 |
| 73 | 1+4.48T+73T2 |
| 79 | 1−6T+79T2 |
| 83 | 1+4T+83T2 |
| 89 | 1+(−7.32−12.6i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−4.5+7.79i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.14705572895428063448877417336, −10.18257573336889572028925933437, −9.020135412983367824107771367280, −8.242032035378495833313999001254, −7.32545419090055812618387222217, −6.44681822157245728736762298299, −4.85611813310988074459383364679, −4.02518619012058607441005479869, −2.97781434624446805719630255174, −0.59675671118218918460236937320,
1.92262402817580827586058454024, 3.39697408338966575749145793737, 4.66746644552499408139395255332, 5.48198528747405048092641515389, 7.16301982154919587188416679669, 7.890454310843357315933530154568, 8.196595566786757182725774877896, 9.950637336760670557166965531338, 10.32361202741907574121250582253, 11.83669854895216553203583891629