L(s) = 1 | + (0.207 − 0.358i)3-s − 2.82·5-s + (0.792 + 1.37i)7-s + (1.41 + 2.44i)9-s + (−2.62 + 4.54i)11-s + (−1 − 3.46i)13-s + (−0.585 + 1.01i)15-s + (0.0857 + 0.148i)17-s + (3.62 + 6.27i)19-s + 0.656·21-s + (−3.62 + 6.27i)23-s + 3.00·25-s + 2.41·27-s + (1.32 − 2.30i)29-s + 5.65·31-s + ⋯ |
L(s) = 1 | + (0.119 − 0.207i)3-s − 1.26·5-s + (0.299 + 0.519i)7-s + (0.471 + 0.816i)9-s + (−0.790 + 1.36i)11-s + (−0.277 − 0.960i)13-s + (−0.151 + 0.261i)15-s + (0.0208 + 0.0360i)17-s + (0.830 + 1.43i)19-s + 0.143·21-s + (−0.755 + 1.30i)23-s + 0.600·25-s + 0.464·27-s + (0.246 − 0.427i)29-s + 1.01·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0128 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0128 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.649541 + 0.657924i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.649541 + 0.657924i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (1 + 3.46i)T \) |
good | 3 | \( 1 + (-0.207 + 0.358i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 2.82T + 5T^{2} \) |
| 7 | \( 1 + (-0.792 - 1.37i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.62 - 4.54i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.0857 - 0.148i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.62 - 6.27i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.62 - 6.27i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.32 + 2.30i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.65T + 31T^{2} \) |
| 37 | \( 1 + (4.74 - 8.21i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.0857 + 0.148i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.03 + 8.72i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 - 2.82T + 53T^{2} \) |
| 59 | \( 1 + (-3.62 - 6.27i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.37 + 4.11i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.621 - 1.07i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 4.48T + 73T^{2} \) |
| 79 | \( 1 - 6T + 79T^{2} \) |
| 83 | \( 1 + 4T + 83T^{2} \) |
| 89 | \( 1 + (-7.32 + 12.6i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.5 - 7.79i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.83669854895216553203583891629, −10.32361202741907574121250582253, −9.950637336760670557166965531338, −8.196595566786757182725774877896, −7.890454310843357315933530154568, −7.16301982154919587188416679669, −5.48198528747405048092641515389, −4.66746644552499408139395255332, −3.39697408338966575749145793737, −1.92262402817580827586058454024,
0.59675671118218918460236937320, 2.97781434624446805719630255174, 4.02518619012058607441005479869, 4.85611813310988074459383364679, 6.44681822157245728736762298299, 7.32545419090055812618387222217, 8.242032035378495833313999001254, 9.020135412983367824107771367280, 10.18257573336889572028925933437, 11.14705572895428063448877417336