L(s) = 1 | + 3-s + (−2.54 + 2.54i)5-s + (−2.54 − 2.54i)7-s − 2·9-s + (−1 + i)11-s + (−2.54 + 2.54i)13-s + (−2.54 + 2.54i)15-s + 3i·17-s + (−2 − 2i)19-s + (−2.54 − 2.54i)21-s + 5.09·23-s − 7.99i·25-s − 5·27-s − 5.09i·29-s + (−5.09 + 5.09i)31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + (−1.14 + 1.14i)5-s + (−0.963 − 0.963i)7-s − 0.666·9-s + (−0.301 + 0.301i)11-s + (−0.707 + 0.707i)13-s + (−0.658 + 0.658i)15-s + 0.727i·17-s + (−0.458 − 0.458i)19-s + (−0.556 − 0.556i)21-s + 1.06·23-s − 1.59i·25-s − 0.962·27-s − 0.946i·29-s + (−0.915 + 0.915i)31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.957−0.289i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.957−0.289i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.957−0.289i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.957−0.289i)
|
Particular Values
L(1) |
≈ |
0.0516898+0.349093i |
L(21) |
≈ |
0.0516898+0.349093i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(2.54−2.54i)T |
good | 3 | 1−T+3T2 |
| 5 | 1+(2.54−2.54i)T−5iT2 |
| 7 | 1+(2.54+2.54i)T+7iT2 |
| 11 | 1+(1−i)T−11iT2 |
| 17 | 1−3iT−17T2 |
| 19 | 1+(2+2i)T+19iT2 |
| 23 | 1−5.09T+23T2 |
| 29 | 1+5.09iT−29T2 |
| 31 | 1+(5.09−5.09i)T−31iT2 |
| 37 | 1+(−2.54−2.54i)T+37iT2 |
| 41 | 1+(−6−6i)T+41iT2 |
| 43 | 1+iT−43T2 |
| 47 | 1+(2.54+2.54i)T+47iT2 |
| 53 | 1−5.09iT−53T2 |
| 59 | 1+(8−8i)T−59iT2 |
| 61 | 1−61T2 |
| 67 | 1+(3+3i)T+67iT2 |
| 71 | 1+(−7.64+7.64i)T−71iT2 |
| 73 | 1+(6−6i)T−73iT2 |
| 79 | 1−5.09iT−79T2 |
| 83 | 1+(5+5i)T+83iT2 |
| 89 | 1+(2−2i)T−89iT2 |
| 97 | 1+(7+7i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.40898402206881439816295049502, −10.78775943778824226801881685413, −9.894739706812234225542328830008, −8.865841785925640623721378297013, −7.71442207920456603963892291435, −7.14328859976291820371974682354, −6.29858617194998800922041737282, −4.44603574149262605827057381643, −3.48804977272946765309609836342, −2.67146770059946876187202292332,
0.19767752283746219961372471541, 2.65575089887556229422964292453, 3.57496313961042972605135272492, 4.99132920166081112136667617576, 5.81671496112109025206349593107, 7.37186392693435805117818798283, 8.183503863471162482817469421664, 8.976761544711955104843657128909, 9.465172401269568065799750120225, 10.96625780926382195448254554280