L(s) = 1 | + 3-s + (−2.54 − 2.54i)5-s + (−2.54 + 2.54i)7-s − 2·9-s + (−1 − i)11-s + (−2.54 − 2.54i)13-s + (−2.54 − 2.54i)15-s − 3i·17-s + (−2 + 2i)19-s + (−2.54 + 2.54i)21-s + 5.09·23-s + 7.99i·25-s − 5·27-s + 5.09i·29-s + (−5.09 − 5.09i)31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + (−1.14 − 1.14i)5-s + (−0.963 + 0.963i)7-s − 0.666·9-s + (−0.301 − 0.301i)11-s + (−0.707 − 0.707i)13-s + (−0.658 − 0.658i)15-s − 0.727i·17-s + (−0.458 + 0.458i)19-s + (−0.556 + 0.556i)21-s + 1.06·23-s + 1.59i·25-s − 0.962·27-s + 0.946i·29-s + (−0.915 − 0.915i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 + 0.289i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0516898 - 0.349093i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0516898 - 0.349093i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (2.54 + 2.54i)T \) |
good | 3 | \( 1 - T + 3T^{2} \) |
| 5 | \( 1 + (2.54 + 2.54i)T + 5iT^{2} \) |
| 7 | \( 1 + (2.54 - 2.54i)T - 7iT^{2} \) |
| 11 | \( 1 + (1 + i)T + 11iT^{2} \) |
| 17 | \( 1 + 3iT - 17T^{2} \) |
| 19 | \( 1 + (2 - 2i)T - 19iT^{2} \) |
| 23 | \( 1 - 5.09T + 23T^{2} \) |
| 29 | \( 1 - 5.09iT - 29T^{2} \) |
| 31 | \( 1 + (5.09 + 5.09i)T + 31iT^{2} \) |
| 37 | \( 1 + (-2.54 + 2.54i)T - 37iT^{2} \) |
| 41 | \( 1 + (-6 + 6i)T - 41iT^{2} \) |
| 43 | \( 1 - iT - 43T^{2} \) |
| 47 | \( 1 + (2.54 - 2.54i)T - 47iT^{2} \) |
| 53 | \( 1 + 5.09iT - 53T^{2} \) |
| 59 | \( 1 + (8 + 8i)T + 59iT^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (3 - 3i)T - 67iT^{2} \) |
| 71 | \( 1 + (-7.64 - 7.64i)T + 71iT^{2} \) |
| 73 | \( 1 + (6 + 6i)T + 73iT^{2} \) |
| 79 | \( 1 + 5.09iT - 79T^{2} \) |
| 83 | \( 1 + (5 - 5i)T - 83iT^{2} \) |
| 89 | \( 1 + (2 + 2i)T + 89iT^{2} \) |
| 97 | \( 1 + (7 - 7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96625780926382195448254554280, −9.465172401269568065799750120225, −8.976761544711955104843657128909, −8.183503863471162482817469421664, −7.37186392693435805117818798283, −5.81671496112109025206349593107, −4.99132920166081112136667617576, −3.57496313961042972605135272492, −2.65575089887556229422964292453, −0.19767752283746219961372471541,
2.67146770059946876187202292332, 3.48804977272946765309609836342, 4.44603574149262605827057381643, 6.29858617194998800922041737282, 7.14328859976291820371974682354, 7.71442207920456603963892291435, 8.865841785925640623721378297013, 9.894739706812234225542328830008, 10.78775943778824226801881685413, 11.40898402206881439816295049502