Properties

Label 2-416-104.101-c1-0-5
Degree $2$
Conductor $416$
Sign $0.862 - 0.505i$
Analytic cond. $3.32177$
Root an. cond. $1.82257$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.633 + 0.366i)3-s + 3.73·5-s + (3 + 1.73i)7-s + (−1.23 + 2.13i)9-s + (−1 − 1.73i)11-s + (−2.59 − 2.5i)13-s + (−2.36 + 1.36i)15-s + (0.232 − 0.401i)17-s + (−0.633 + 1.09i)19-s − 2.53·21-s + (4.09 + 7.09i)23-s + 8.92·25-s − 4i·27-s + (2.59 − 1.5i)29-s − 4.73i·31-s + ⋯
L(s)  = 1  + (−0.366 + 0.211i)3-s + 1.66·5-s + (1.13 + 0.654i)7-s + (−0.410 + 0.711i)9-s + (−0.301 − 0.522i)11-s + (−0.720 − 0.693i)13-s + (−0.610 + 0.352i)15-s + (0.0562 − 0.0974i)17-s + (−0.145 + 0.251i)19-s − 0.553·21-s + (0.854 + 1.48i)23-s + 1.78·25-s − 0.769i·27-s + (0.482 − 0.278i)29-s − 0.849i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.862 - 0.505i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.862 - 0.505i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(416\)    =    \(2^{5} \cdot 13\)
Sign: $0.862 - 0.505i$
Analytic conductor: \(3.32177\)
Root analytic conductor: \(1.82257\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{416} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 416,\ (\ :1/2),\ 0.862 - 0.505i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.61454 + 0.438169i\)
\(L(\frac12)\) \(\approx\) \(1.61454 + 0.438169i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + (2.59 + 2.5i)T \)
good3 \( 1 + (0.633 - 0.366i)T + (1.5 - 2.59i)T^{2} \)
5 \( 1 - 3.73T + 5T^{2} \)
7 \( 1 + (-3 - 1.73i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (-0.232 + 0.401i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.633 - 1.09i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-4.09 - 7.09i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-2.59 + 1.5i)T + (14.5 - 25.1i)T^{2} \)
31 \( 1 + 4.73iT - 31T^{2} \)
37 \( 1 + (-2.13 - 3.69i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (7.96 - 4.59i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (2.19 + 1.26i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + 6.73iT - 47T^{2} \)
53 \( 1 + 3.92iT - 53T^{2} \)
59 \( 1 + (0.267 - 0.464i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-0.866 - 0.5i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (3.63 + 6.29i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (8.02 + 4.63i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + 1.73iT - 73T^{2} \)
79 \( 1 - 10.3T + 79T^{2} \)
83 \( 1 + 1.46T + 83T^{2} \)
89 \( 1 + (-6.46 + 3.73i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (5.19 + 3i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.21179342211686432477877550922, −10.35615756214236753193753155132, −9.641412388378613546966654067472, −8.576882916538603149633808579381, −7.74558994094260016705673428566, −6.23484463804451982473609812478, −5.25776138198516549859456139342, −5.12218582563962173550692513912, −2.80573823234163488842739810010, −1.77014196261756404392811871620, 1.37689456409559378996232965991, 2.58228666330642898521846898328, 4.57670811670876665145039686853, 5.31537771085796384898704365689, 6.47880135829166454267554200066, 7.12750031486855883641796761728, 8.563026409030889233142383571549, 9.368806809361251483086610948737, 10.33489965639451944844706599530, 10.95504223102545002022818735892

Graph of the $Z$-function along the critical line