L(s) = 1 | + (−0.633 + 0.366i)3-s + 3.73·5-s + (3 + 1.73i)7-s + (−1.23 + 2.13i)9-s + (−1 − 1.73i)11-s + (−2.59 − 2.5i)13-s + (−2.36 + 1.36i)15-s + (0.232 − 0.401i)17-s + (−0.633 + 1.09i)19-s − 2.53·21-s + (4.09 + 7.09i)23-s + 8.92·25-s − 4i·27-s + (2.59 − 1.5i)29-s − 4.73i·31-s + ⋯ |
L(s) = 1 | + (−0.366 + 0.211i)3-s + 1.66·5-s + (1.13 + 0.654i)7-s + (−0.410 + 0.711i)9-s + (−0.301 − 0.522i)11-s + (−0.720 − 0.693i)13-s + (−0.610 + 0.352i)15-s + (0.0562 − 0.0974i)17-s + (−0.145 + 0.251i)19-s − 0.553·21-s + (0.854 + 1.48i)23-s + 1.78·25-s − 0.769i·27-s + (0.482 − 0.278i)29-s − 0.849i·31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.862−0.505i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.862−0.505i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.862−0.505i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.862−0.505i)
|
Particular Values
L(1) |
≈ |
1.61454+0.438169i |
L(21) |
≈ |
1.61454+0.438169i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(2.59+2.5i)T |
good | 3 | 1+(0.633−0.366i)T+(1.5−2.59i)T2 |
| 5 | 1−3.73T+5T2 |
| 7 | 1+(−3−1.73i)T+(3.5+6.06i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−0.232+0.401i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.633−1.09i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−4.09−7.09i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.59+1.5i)T+(14.5−25.1i)T2 |
| 31 | 1+4.73iT−31T2 |
| 37 | 1+(−2.13−3.69i)T+(−18.5+32.0i)T2 |
| 41 | 1+(7.96−4.59i)T+(20.5−35.5i)T2 |
| 43 | 1+(2.19+1.26i)T+(21.5+37.2i)T2 |
| 47 | 1+6.73iT−47T2 |
| 53 | 1+3.92iT−53T2 |
| 59 | 1+(0.267−0.464i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.866−0.5i)T+(30.5+52.8i)T2 |
| 67 | 1+(3.63+6.29i)T+(−33.5+58.0i)T2 |
| 71 | 1+(8.02+4.63i)T+(35.5+61.4i)T2 |
| 73 | 1+1.73iT−73T2 |
| 79 | 1−10.3T+79T2 |
| 83 | 1+1.46T+83T2 |
| 89 | 1+(−6.46+3.73i)T+(44.5−77.0i)T2 |
| 97 | 1+(5.19+3i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.21179342211686432477877550922, −10.35615756214236753193753155132, −9.641412388378613546966654067472, −8.576882916538603149633808579381, −7.74558994094260016705673428566, −6.23484463804451982473609812478, −5.25776138198516549859456139342, −5.12218582563962173550692513912, −2.80573823234163488842739810010, −1.77014196261756404392811871620,
1.37689456409559378996232965991, 2.58228666330642898521846898328, 4.57670811670876665145039686853, 5.31537771085796384898704365689, 6.47880135829166454267554200066, 7.12750031486855883641796761728, 8.563026409030889233142383571549, 9.368806809361251483086610948737, 10.33489965639451944844706599530, 10.95504223102545002022818735892