L(s) = 1 | + (−0.633 − 0.366i)3-s + 3.73·5-s + (3 − 1.73i)7-s + (−1.23 − 2.13i)9-s + (−1 + 1.73i)11-s + (−2.59 + 2.5i)13-s + (−2.36 − 1.36i)15-s + (0.232 + 0.401i)17-s + (−0.633 − 1.09i)19-s − 2.53·21-s + (4.09 − 7.09i)23-s + 8.92·25-s + 4i·27-s + (2.59 + 1.5i)29-s + 4.73i·31-s + ⋯ |
L(s) = 1 | + (−0.366 − 0.211i)3-s + 1.66·5-s + (1.13 − 0.654i)7-s + (−0.410 − 0.711i)9-s + (−0.301 + 0.522i)11-s + (−0.720 + 0.693i)13-s + (−0.610 − 0.352i)15-s + (0.0562 + 0.0974i)17-s + (−0.145 − 0.251i)19-s − 0.553·21-s + (0.854 − 1.48i)23-s + 1.78·25-s + 0.769i·27-s + (0.482 + 0.278i)29-s + 0.849i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.862 + 0.505i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.862 + 0.505i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.61454 - 0.438169i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.61454 - 0.438169i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (2.59 - 2.5i)T \) |
good | 3 | \( 1 + (0.633 + 0.366i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 3.73T + 5T^{2} \) |
| 7 | \( 1 + (-3 + 1.73i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.232 - 0.401i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.633 + 1.09i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.09 + 7.09i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.59 - 1.5i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4.73iT - 31T^{2} \) |
| 37 | \( 1 + (-2.13 + 3.69i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (7.96 + 4.59i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.19 - 1.26i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 6.73iT - 47T^{2} \) |
| 53 | \( 1 - 3.92iT - 53T^{2} \) |
| 59 | \( 1 + (0.267 + 0.464i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.866 + 0.5i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.63 - 6.29i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (8.02 - 4.63i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 1.73iT - 73T^{2} \) |
| 79 | \( 1 - 10.3T + 79T^{2} \) |
| 83 | \( 1 + 1.46T + 83T^{2} \) |
| 89 | \( 1 + (-6.46 - 3.73i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.19 - 3i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95504223102545002022818735892, −10.33489965639451944844706599530, −9.368806809361251483086610948737, −8.563026409030889233142383571549, −7.12750031486855883641796761728, −6.47880135829166454267554200066, −5.31537771085796384898704365689, −4.57670811670876665145039686853, −2.58228666330642898521846898328, −1.37689456409559378996232965991,
1.77014196261756404392811871620, 2.80573823234163488842739810010, 5.12218582563962173550692513912, 5.25776138198516549859456139342, 6.23484463804451982473609812478, 7.74558994094260016705673428566, 8.576882916538603149633808579381, 9.641412388378613546966654067472, 10.35615756214236753193753155132, 11.21179342211686432477877550922