L(s) = 1 | + 2·3-s + 9-s − 6i·11-s − 6i·17-s − 2i·19-s − 4·27-s − 12i·33-s − 6·41-s + 10·43-s + 7·49-s − 12i·51-s − 4i·57-s + 6i·59-s + 14·67-s − 2i·73-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.333·9-s − 1.80i·11-s − 1.45i·17-s − 0.458i·19-s − 0.769·27-s − 2.08i·33-s − 0.937·41-s + 1.52·43-s + 49-s − 1.68i·51-s − 0.529i·57-s + 0.781i·59-s + 1.71·67-s − 0.234i·73-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.316+0.948i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(0.316+0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.316+0.948i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :1/2), 0.316+0.948i)
|
Particular Values
L(1) |
≈ |
2.252996842 |
L(21) |
≈ |
2.252996842 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−2T+3T2 |
| 7 | 1−7T2 |
| 11 | 1+6iT−11T2 |
| 13 | 1+13T2 |
| 17 | 1+6iT−17T2 |
| 19 | 1+2iT−19T2 |
| 23 | 1−23T2 |
| 29 | 1−29T2 |
| 31 | 1+31T2 |
| 37 | 1+37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−10T+43T2 |
| 47 | 1−47T2 |
| 53 | 1+53T2 |
| 59 | 1−6iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1−14T+67T2 |
| 71 | 1+71T2 |
| 73 | 1+2iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1−18T+83T2 |
| 89 | 1+18T+89T2 |
| 97 | 1−10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.043286683129683219459596029754, −8.591579832571673505528003084598, −7.82336287633584810161167813566, −7.02556548992560164162144608904, −5.96858853173716671788493034377, −5.14925602938534690765238908263, −3.89753377453048086960262528029, −3.08735359786260095590437152702, −2.43016051313926583327314117215, −0.74244896642002666158509946344,
1.71493873068809262695085591796, 2.42481699904604462119437761230, 3.64768968698289207823728794986, 4.29569294913590630432367766231, 5.41852473123892389915316951896, 6.49255958603362394750607504820, 7.38715341089691132133790223606, 8.019838620753455863560859146050, 8.730054488693157569360021493151, 9.534829036418252700257629357443