L(s) = 1 | + 2·3-s + 9-s + 6i·11-s + 6i·17-s + 2i·19-s − 4·27-s + 12i·33-s − 6·41-s + 10·43-s + 7·49-s + 12i·51-s + 4i·57-s − 6i·59-s + 14·67-s + 2i·73-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.333·9-s + 1.80i·11-s + 1.45i·17-s + 0.458i·19-s − 0.769·27-s + 2.08i·33-s − 0.937·41-s + 1.52·43-s + 49-s + 1.68i·51-s + 0.529i·57-s − 0.781i·59-s + 1.71·67-s + 0.234i·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.316 - 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.316 - 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.252996842\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.252996842\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 2T + 3T^{2} \) |
| 7 | \( 1 - 7T^{2} \) |
| 11 | \( 1 - 6iT - 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 - 6iT - 17T^{2} \) |
| 19 | \( 1 - 2iT - 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 - 10T + 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 6iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 - 14T + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 2iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 18T + 83T^{2} \) |
| 89 | \( 1 + 18T + 89T^{2} \) |
| 97 | \( 1 + 10iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.534829036418252700257629357443, −8.730054488693157569360021493151, −8.019838620753455863560859146050, −7.38715341089691132133790223606, −6.49255958603362394750607504820, −5.41852473123892389915316951896, −4.29569294913590630432367766231, −3.64768968698289207823728794986, −2.42481699904604462119437761230, −1.71493873068809262695085591796,
0.74244896642002666158509946344, 2.43016051313926583327314117215, 3.08735359786260095590437152702, 3.89753377453048086960262528029, 5.14925602938534690765238908263, 5.96858853173716671788493034377, 7.02556548992560164162144608904, 7.82336287633584810161167813566, 8.591579832571673505528003084598, 9.043286683129683219459596029754