L(s) = 1 | + (1 − i)3-s + (1 − i)7-s + i·9-s − 4·11-s + (3 + 3i)13-s + (3 + 3i)17-s + 6i·19-s − 2i·21-s + (3 + 3i)23-s + (4 + 4i)27-s + 2·29-s − 6i·31-s + (−4 + 4i)33-s + (3 − 3i)37-s + 6·39-s + ⋯ |
L(s) = 1 | + (0.577 − 0.577i)3-s + (0.377 − 0.377i)7-s + 0.333i·9-s − 1.20·11-s + (0.832 + 0.832i)13-s + (0.727 + 0.727i)17-s + 1.37i·19-s − 0.436i·21-s + (0.625 + 0.625i)23-s + (0.769 + 0.769i)27-s + 0.371·29-s − 1.07i·31-s + (−0.696 + 0.696i)33-s + (0.493 − 0.493i)37-s + 0.960·39-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.973−0.229i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(0.973−0.229i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.973−0.229i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(607,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :1/2), 0.973−0.229i)
|
Particular Values
L(1) |
≈ |
2.134961555 |
L(21) |
≈ |
2.134961555 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−1+i)T−3iT2 |
| 7 | 1+(−1+i)T−7iT2 |
| 11 | 1+4T+11T2 |
| 13 | 1+(−3−3i)T+13iT2 |
| 17 | 1+(−3−3i)T+17iT2 |
| 19 | 1−6iT−19T2 |
| 23 | 1+(−3−3i)T+23iT2 |
| 29 | 1−2T+29T2 |
| 31 | 1+6iT−31T2 |
| 37 | 1+(−3+3i)T−37iT2 |
| 41 | 1−6T+41T2 |
| 43 | 1+(3−3i)T−43iT2 |
| 47 | 1+(−9+9i)T−47iT2 |
| 53 | 1+(5+5i)T+53iT2 |
| 59 | 1+10iT−59T2 |
| 61 | 1−12iT−61T2 |
| 67 | 1+(9+9i)T+67iT2 |
| 71 | 1+6iT−71T2 |
| 73 | 1+(5−5i)T−73iT2 |
| 79 | 1+79T2 |
| 83 | 1+(3−3i)T−83iT2 |
| 89 | 1−89T2 |
| 97 | 1+(−7−7i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.335471871715548963134810547260, −8.379833289083604216675323831739, −7.84634544188999616789983521419, −7.37277993114567478708472277995, −6.18081979363828298268674060771, −5.42686353838499235316846106494, −4.32105652789930491658332492539, −3.37673221799184133562580383159, −2.22009061319121592116103461872, −1.32389948059462705641449834747,
0.868681328818889429323508678969, 2.76498067237927063748406916396, 3.04649248551751460664454761990, 4.42221592988129295533729913592, 5.14303012029710053545229930093, 6.00074081911287784179597347611, 7.11121889197624676284593511399, 7.957129164992029050136585001242, 8.710792514662502558128758756072, 9.199986036096361040644173445779