L(s) = 1 | + (1 + i)3-s + (1 + i)7-s − i·9-s − 4·11-s + (3 − 3i)13-s + (3 − 3i)17-s − 6i·19-s + 2i·21-s + (3 − 3i)23-s + (4 − 4i)27-s + 2·29-s + 6i·31-s + (−4 − 4i)33-s + (3 + 3i)37-s + 6·39-s + ⋯ |
L(s) = 1 | + (0.577 + 0.577i)3-s + (0.377 + 0.377i)7-s − 0.333i·9-s − 1.20·11-s + (0.832 − 0.832i)13-s + (0.727 − 0.727i)17-s − 1.37i·19-s + 0.436i·21-s + (0.625 − 0.625i)23-s + (0.769 − 0.769i)27-s + 0.371·29-s + 1.07i·31-s + (−0.696 − 0.696i)33-s + (0.493 + 0.493i)37-s + 0.960·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.134961555\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.134961555\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-1 - i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1 - i)T + 7iT^{2} \) |
| 11 | \( 1 + 4T + 11T^{2} \) |
| 13 | \( 1 + (-3 + 3i)T - 13iT^{2} \) |
| 17 | \( 1 + (-3 + 3i)T - 17iT^{2} \) |
| 19 | \( 1 + 6iT - 19T^{2} \) |
| 23 | \( 1 + (-3 + 3i)T - 23iT^{2} \) |
| 29 | \( 1 - 2T + 29T^{2} \) |
| 31 | \( 1 - 6iT - 31T^{2} \) |
| 37 | \( 1 + (-3 - 3i)T + 37iT^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + (3 + 3i)T + 43iT^{2} \) |
| 47 | \( 1 + (-9 - 9i)T + 47iT^{2} \) |
| 53 | \( 1 + (5 - 5i)T - 53iT^{2} \) |
| 59 | \( 1 - 10iT - 59T^{2} \) |
| 61 | \( 1 + 12iT - 61T^{2} \) |
| 67 | \( 1 + (9 - 9i)T - 67iT^{2} \) |
| 71 | \( 1 - 6iT - 71T^{2} \) |
| 73 | \( 1 + (5 + 5i)T + 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (3 + 3i)T + 83iT^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (-7 + 7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.199986036096361040644173445779, −8.710792514662502558128758756072, −7.957129164992029050136585001242, −7.11121889197624676284593511399, −6.00074081911287784179597347611, −5.14303012029710053545229930093, −4.42221592988129295533729913592, −3.04649248551751460664454761990, −2.76498067237927063748406916396, −0.868681328818889429323508678969,
1.32389948059462705641449834747, 2.22009061319121592116103461872, 3.37673221799184133562580383159, 4.32105652789930491658332492539, 5.42686353838499235316846106494, 6.18081979363828298268674060771, 7.37277993114567478708472277995, 7.84634544188999616789983521419, 8.379833289083604216675323831739, 9.335471871715548963134810547260