L(s) = 1 | + (−1 − i)3-s + (−3 + 3i)7-s − i·9-s + 6·21-s + (1 + i)23-s + (−4 + 4i)27-s − 6i·29-s + 12·41-s + (9 + 9i)43-s + (7 − 7i)47-s − 11i·49-s + 8·61-s + (3 + 3i)63-s + (3 − 3i)67-s − 2i·69-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.577i)3-s + (−1.13 + 1.13i)7-s − 0.333i·9-s + 1.30·21-s + (0.208 + 0.208i)23-s + (−0.769 + 0.769i)27-s − 1.11i·29-s + 1.87·41-s + (1.37 + 1.37i)43-s + (1.02 − 1.02i)47-s − 1.57i·49-s + 1.02·61-s + (0.377 + 0.377i)63-s + (0.366 − 0.366i)67-s − 0.240i·69-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.850+0.525i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(0.850+0.525i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.850+0.525i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(1407,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :1/2), 0.850+0.525i)
|
Particular Values
L(1) |
≈ |
1.039191406 |
L(21) |
≈ |
1.039191406 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(1+i)T+3iT2 |
| 7 | 1+(3−3i)T−7iT2 |
| 11 | 1−11T2 |
| 13 | 1−13iT2 |
| 17 | 1+17iT2 |
| 19 | 1+19T2 |
| 23 | 1+(−1−i)T+23iT2 |
| 29 | 1+6iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1+37iT2 |
| 41 | 1−12T+41T2 |
| 43 | 1+(−9−9i)T+43iT2 |
| 47 | 1+(−7+7i)T−47iT2 |
| 53 | 1−53iT2 |
| 59 | 1+59T2 |
| 61 | 1−8T+61T2 |
| 67 | 1+(−3+3i)T−67iT2 |
| 71 | 1−71T2 |
| 73 | 1−73iT2 |
| 79 | 1+79T2 |
| 83 | 1+(11+11i)T+83iT2 |
| 89 | 1−6iT−89T2 |
| 97 | 1+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.378468980958517742437818312667, −8.676683686322070143775019249456, −7.58391356396562637697442744786, −6.79580121814763522725822710827, −5.92255289785252634124047291822, −5.73648311835224548715439573185, −4.29392024536477669311303045219, −3.17512173195372653193629663407, −2.24603293672649670424589853110, −0.66370069951966065907765649761,
0.78258933533769630609459500687, 2.56100977990067252553594394880, 3.74131552264969916001740768214, 4.35635188458020468337971909209, 5.38943781518919203046266981553, 6.18119996349557034845715173650, 7.09655167360036780894579923693, 7.67013848081013162138557875546, 8.908489870436310052046291335253, 9.604994132106875945435616786468