Properties

Label 2-40e2-20.3-c1-0-10
Degree $2$
Conductor $1600$
Sign $0.850 - 0.525i$
Analytic cond. $12.7760$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + i)3-s + (−3 − 3i)7-s + i·9-s + 6·21-s + (1 − i)23-s + (−4 − 4i)27-s + 6i·29-s + 12·41-s + (9 − 9i)43-s + (7 + 7i)47-s + 11i·49-s + 8·61-s + (3 − 3i)63-s + (3 + 3i)67-s + 2i·69-s + ⋯
L(s)  = 1  + (−0.577 + 0.577i)3-s + (−1.13 − 1.13i)7-s + 0.333i·9-s + 1.30·21-s + (0.208 − 0.208i)23-s + (−0.769 − 0.769i)27-s + 1.11i·29-s + 1.87·41-s + (1.37 − 1.37i)43-s + (1.02 + 1.02i)47-s + 1.57i·49-s + 1.02·61-s + (0.377 − 0.377i)63-s + (0.366 + 0.366i)67-s + 0.240i·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $0.850 - 0.525i$
Analytic conductor: \(12.7760\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1600} (1343, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :1/2),\ 0.850 - 0.525i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.039191406\)
\(L(\frac12)\) \(\approx\) \(1.039191406\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (1 - i)T - 3iT^{2} \)
7 \( 1 + (3 + 3i)T + 7iT^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 + 13iT^{2} \)
17 \( 1 - 17iT^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + (-1 + i)T - 23iT^{2} \)
29 \( 1 - 6iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 - 37iT^{2} \)
41 \( 1 - 12T + 41T^{2} \)
43 \( 1 + (-9 + 9i)T - 43iT^{2} \)
47 \( 1 + (-7 - 7i)T + 47iT^{2} \)
53 \( 1 + 53iT^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 8T + 61T^{2} \)
67 \( 1 + (-3 - 3i)T + 67iT^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + 73iT^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + (11 - 11i)T - 83iT^{2} \)
89 \( 1 + 6iT - 89T^{2} \)
97 \( 1 - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.604994132106875945435616786468, −8.908489870436310052046291335253, −7.67013848081013162138557875546, −7.09655167360036780894579923693, −6.18119996349557034845715173650, −5.38943781518919203046266981553, −4.35635188458020468337971909209, −3.74131552264969916001740768214, −2.56100977990067252553594394880, −0.78258933533769630609459500687, 0.66370069951966065907765649761, 2.24603293672649670424589853110, 3.17512173195372653193629663407, 4.29392024536477669311303045219, 5.73648311835224548715439573185, 5.92255289785252634124047291822, 6.79580121814763522725822710827, 7.58391356396562637697442744786, 8.676683686322070143775019249456, 9.378468980958517742437818312667

Graph of the $Z$-function along the critical line