Properties

Label 2-4080-1.1-c1-0-22
Degree $2$
Conductor $4080$
Sign $1$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 7-s + 9-s + 5·11-s + 4·13-s + 15-s + 17-s + 19-s − 21-s + 8·23-s + 25-s − 27-s − 29-s − 5·33-s − 35-s − 37-s − 4·39-s − 5·41-s + 4·43-s − 45-s − 3·47-s − 6·49-s − 51-s − 5·53-s − 5·55-s − 57-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s + 1.50·11-s + 1.10·13-s + 0.258·15-s + 0.242·17-s + 0.229·19-s − 0.218·21-s + 1.66·23-s + 1/5·25-s − 0.192·27-s − 0.185·29-s − 0.870·33-s − 0.169·35-s − 0.164·37-s − 0.640·39-s − 0.780·41-s + 0.609·43-s − 0.149·45-s − 0.437·47-s − 6/7·49-s − 0.140·51-s − 0.686·53-s − 0.674·55-s − 0.132·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.886424026\)
\(L(\frac12)\) \(\approx\) \(1.886424026\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.497259520552686283758893592707, −7.65081306740013705831673968649, −6.80552898931082038790525195431, −6.37687863619112417808931811511, −5.43232663137048254531984962980, −4.68030847881529981322695477505, −3.85400346631121934257234186846, −3.19632012454780569948363796912, −1.62807602814767249117011534968, −0.894831587803758256927277281709, 0.894831587803758256927277281709, 1.62807602814767249117011534968, 3.19632012454780569948363796912, 3.85400346631121934257234186846, 4.68030847881529981322695477505, 5.43232663137048254531984962980, 6.37687863619112417808931811511, 6.80552898931082038790525195431, 7.65081306740013705831673968649, 8.497259520552686283758893592707

Graph of the $Z$-function along the critical line