Properties

Label 2-40656-1.1-c1-0-51
Degree $2$
Conductor $40656$
Sign $-1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 7-s + 9-s − 3·13-s + 3·15-s + 5·17-s + 6·19-s + 21-s + 4·23-s + 4·25-s − 27-s − 3·29-s + 2·31-s + 3·35-s + 37-s + 3·39-s − 11·41-s − 10·43-s − 3·45-s + 6·47-s + 49-s − 5·51-s − 53-s − 6·57-s + 6·59-s − 10·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 0.377·7-s + 1/3·9-s − 0.832·13-s + 0.774·15-s + 1.21·17-s + 1.37·19-s + 0.218·21-s + 0.834·23-s + 4/5·25-s − 0.192·27-s − 0.557·29-s + 0.359·31-s + 0.507·35-s + 0.164·37-s + 0.480·39-s − 1.71·41-s − 1.52·43-s − 0.447·45-s + 0.875·47-s + 1/7·49-s − 0.700·51-s − 0.137·53-s − 0.794·57-s + 0.781·59-s − 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 11 T + p T^{2} \) 1.41.l
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 15 T + p T^{2} \) 1.97.p
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.08286624049759, −14.78623636648235, −13.83263838375304, −13.57505309759073, −12.68897033264737, −12.32022574665214, −11.82401015617303, −11.60478920173979, −10.95563274976616, −10.25768633388434, −9.861475082514925, −9.304032994079007, −8.576900155547489, −7.879251326063285, −7.529570981026078, −7.043752803441842, −6.494594880275776, −5.593697821239213, −5.139976913289486, −4.661579884423890, −3.773877989804623, −3.358505328129709, −2.789591434900175, −1.587694805278460, −0.7849615055502963, 0, 0.7849615055502963, 1.587694805278460, 2.789591434900175, 3.358505328129709, 3.773877989804623, 4.661579884423890, 5.139976913289486, 5.593697821239213, 6.494594880275776, 7.043752803441842, 7.529570981026078, 7.879251326063285, 8.576900155547489, 9.304032994079007, 9.861475082514925, 10.25768633388434, 10.95563274976616, 11.60478920173979, 11.82401015617303, 12.32022574665214, 12.68897033264737, 13.57505309759073, 13.83263838375304, 14.78623636648235, 15.08286624049759

Graph of the $Z$-function along the critical line