L(s) = 1 | − 1.56·2-s − 2.13·3-s + 0.440·4-s + 3.07·5-s + 3.34·6-s + 3.18·7-s + 2.43·8-s + 1.57·9-s − 4.80·10-s + 0.942·11-s − 0.942·12-s + 0.539·13-s − 4.97·14-s − 6.57·15-s − 4.68·16-s + 7.09·17-s − 2.45·18-s − 6.61·19-s + 1.35·20-s − 6.80·21-s − 1.47·22-s + 6.33·23-s − 5.20·24-s + 4.46·25-s − 0.842·26-s + 3.05·27-s + 1.40·28-s + ⋯ |
L(s) = 1 | − 1.10·2-s − 1.23·3-s + 0.220·4-s + 1.37·5-s + 1.36·6-s + 1.20·7-s + 0.861·8-s + 0.523·9-s − 1.51·10-s + 0.284·11-s − 0.272·12-s + 0.149·13-s − 1.32·14-s − 1.69·15-s − 1.17·16-s + 1.72·17-s − 0.578·18-s − 1.51·19-s + 0.303·20-s − 1.48·21-s − 0.313·22-s + 1.32·23-s − 1.06·24-s + 0.893·25-s − 0.165·26-s + 0.587·27-s + 0.265·28-s + ⋯ |
Λ(s)=(=(4001s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4001s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.098641635 |
L(21) |
≈ |
1.098641635 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 4001 | 1+O(T) |
good | 2 | 1+1.56T+2T2 |
| 3 | 1+2.13T+3T2 |
| 5 | 1−3.07T+5T2 |
| 7 | 1−3.18T+7T2 |
| 11 | 1−0.942T+11T2 |
| 13 | 1−0.539T+13T2 |
| 17 | 1−7.09T+17T2 |
| 19 | 1+6.61T+19T2 |
| 23 | 1−6.33T+23T2 |
| 29 | 1−5.77T+29T2 |
| 31 | 1+3.51T+31T2 |
| 37 | 1+5.49T+37T2 |
| 41 | 1−1.95T+41T2 |
| 43 | 1−6.66T+43T2 |
| 47 | 1−7.12T+47T2 |
| 53 | 1−10.8T+53T2 |
| 59 | 1−11.9T+59T2 |
| 61 | 1+14.0T+61T2 |
| 67 | 1−12.5T+67T2 |
| 71 | 1+1.46T+71T2 |
| 73 | 1+10.4T+73T2 |
| 79 | 1−13.5T+79T2 |
| 83 | 1−0.331T+83T2 |
| 89 | 1+9.35T+89T2 |
| 97 | 1−10.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.673452447800569796173962897730, −7.81007103130547083692461878090, −6.98872525289580980079080502234, −6.24289845453962706452349007478, −5.40657371628882315496146396826, −5.09036478651301986080304517653, −4.11639579011165614074390438146, −2.45350206028468091272970499548, −1.45826472027421396400312074012, −0.870853432547502287515960925873,
0.870853432547502287515960925873, 1.45826472027421396400312074012, 2.45350206028468091272970499548, 4.11639579011165614074390438146, 5.09036478651301986080304517653, 5.40657371628882315496146396826, 6.24289845453962706452349007478, 6.98872525289580980079080502234, 7.81007103130547083692461878090, 8.673452447800569796173962897730