Properties

Label 4001.1
Modulus $4001$
Conductor $1$
Order $1$
Real yes
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4001, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0]))
 
pari: [g,chi] = znchar(Mod(1,4001))
 

Basic properties

Modulus: \(4001\)
Conductor: \(1\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{1}(0,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4001.a

\(\chi_{4001}(1,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q\)

Values on generators

\(3\) → \(1\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 4001 }(1, a) \) \(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4001 }(1,a) \;\) at \(\;a = \) e.g. 2